Patents by Inventor Harlan Saul Robins

Harlan Saul Robins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10894977
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a template composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: January 19, 2021
    Assignee: Adaptive Biotechnologies corporation
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston, Ryan O. Emerson, Anna M. Sherwood
  • Publication number: 20190203281
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a template composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 4, 2019
    Inventors: Harlan Saul ROBINS, Christopher Scott CARLSON, Robert J. LIVINGSTON, Ryan O. EMERSON, Anna M. SHERWOOD
  • Patent number: 10214770
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 26, 2019
    Assignee: ADAPTIVE BIOTECHNOLOGIES CORP.
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston, Ryan O. Emerson, Anna M. Sherwood
  • Patent number: 10150996
    Abstract: A relative representation of adaptive immune cells in a biological sample is quantified using multiplex PCR and sequencing of adaptive immune cells, control genes, and synthetic template molecules. Disclosed herein are methods for quantifying a number of adaptive immune cells in a biological sample, and methods for quantifying a relative representation of adaptive immune cells in a biological sample that comprises a mixture of cells comprising adaptive immune cells and cells that are not adaptive immune cells. Methods are provided for amplifying by multiplex PCR and sequencing a first set of synthetic templates each comprising one TCR or IgV segment and one TCR of Ig J or C segment and a unique bar code.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: December 11, 2018
    Assignee: ADAPTIVE BIOTECHNOLOGIES CORP.
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Mark J. Rieder, Anna M. Sherwood, Ryan O. Emerson
  • Publication number: 20170037469
    Abstract: A relative representation of adaptive immune cells in a biological sample is quantified using multiplex PCR and sequencing of adaptive immune cells, control genes, and synthetic template molecules. Disclosed herein are methods for quantifying a number of adaptive immune cells in a biological sample, and methods for quantifying a relative representation of adaptive immune cells in a biological sample that comprises a mixture of cells comprising adaptive immune cells and cells that are not adaptive immune cells. Methods are provided for amplifying by multiplex PCR and sequencing a first set of synthetic templates each comprising one TCR or IgV segment and one TCR of Ig J or C segment and a unique bar code.
    Type: Application
    Filed: March 5, 2015
    Publication date: February 9, 2017
    Inventors: Harlan Saul ROBINS, Christopher Scott CARLSON, Mark J. RIEDER, Anna M. SHERWOOD, Ryan O. EMERSON
  • Publication number: 20160319340
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 3, 2016
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston, Ryan O. Emerson, Anna M. Sherwood
  • Patent number: 9371558
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: June 21, 2016
    Assignee: Adaptive Biotechnologies Corp.
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston, Ryan O. Emerson, Anna M. Sherwood
  • Patent number: 9150905
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: October 6, 2015
    Assignee: Adaptive Biotechnologies Corporation
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston, Ryan O. Emerson, Anna M. Sherwood
  • Publication number: 20150203897
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed N high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 23, 2015
    Inventors: HARLAN SAUL ROBINS, CHRISTOPHER SCOTT CARLSON, ROBERT J. LIVINGSTON, RYAN O. EMERSON, ANNA M. SHERWOOD
  • Publication number: 20150017652
    Abstract: Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
    Type: Application
    Filed: May 8, 2013
    Publication date: January 15, 2015
    Inventors: Harlan Saul Robins, Christopher Scott Carlson, Robert J. Livingston
  • Publication number: 20140221220
    Abstract: A method of measuring immunocompetence is described. This method provides a means for assessing the effects of diseases or conditions that compromise the immune system and of therapies aimed to reconstitute it. This method is based on quantifying T-cell diversity by calculating the number of diverse T-cell receptor (TCR) beta chain variable regions from blood cells.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: Harlan Saul Robins, Edus H. Warren, III, Christopher Scott Carlson
  • Publication number: 20140206549
    Abstract: A method of measuring immunocompetence is described. This method provides a means for assessing the effects of diseases or conditions that compromise the immune system and of therapies aimed to reconstitute it. This method is based on quantifying T-cell diversity by calculating the number of diverse T-cell receptor (TCR) beta chain variable regions from blood cells.
    Type: Application
    Filed: February 18, 2014
    Publication date: July 24, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: Harlan Saul Robins, Edus H. Warren, III, Christopher Scott Carlson
  • Publication number: 20140206548
    Abstract: A method of measuring immunocompetence is described. This method provides a means for assessing the effects of diseases or conditions that compromise the immune system and of therapies aimed to reconstitute it. This method is based on quantifying T-cell diversity by calculating the number of diverse T-cell receptor (TCR) beta chain variable regions from blood cells.
    Type: Application
    Filed: February 18, 2014
    Publication date: July 24, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: Harlan Saul Robins, Edus H. Warren, III, Christopher Scott Carlson