Patents by Inventor Harmesh K. Saini

Harmesh K. Saini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230358719
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 9, 2023
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Patent number: 11788969
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: October 17, 2023
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 11650191
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: May 16, 2023
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Publication number: 20210278389
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 9, 2021
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Publication number: 20210172878
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: October 19, 2020
    Publication date: June 10, 2021
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 10976294
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: April 13, 2021
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Patent number: 10845313
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 24, 2020
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20200003745
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 2, 2020
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Publication number: 20190079020
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: June 8, 2018
    Publication date: March 14, 2019
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 10018567
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 10, 2018
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 9903844
    Abstract: A real-time method and analytical system for determining haloacetic acids in water which operate by: (1) extracting samples on ion-exchange absorbent medium; (2) concentrating haloacetic acids on hyper-crosslinked medium; (3) eluting the analytes from the concentration medium for injection into an HPLC system; (4) separating individual haloacetic acid in reverse-phase chromatography performed by the HPLC system; and (5) measuring optical characteristics (UV-absorbance) of haloacetic acids, to determine concentration. The entire process can be performed using a completely self-contained, in-situ mechanism that sits at a water distribution point for 24/7 testing, with automated control, monitoring, reporting, and employment of remedial measures (e.g., automated adjustment of the water treatment process).
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: February 27, 2018
    Assignee: AMS Trace Metals, Inc.
    Inventor: Harmesh K. Saini
  • Publication number: 20160169847
    Abstract: A real-time method and analytical system for determining haloacetic acids in water which operate by: (1) extracting samples on ion-exchange absorbent medium; (2) concentrating haloacetic acids on hyper-crosslinked medium; (3) eluting the analytes from the concentration medium for injection into an HPLC system; (4) separating individual haloacetic acid in reverse-phase chromatography performed by the HPLC system; and (5) measuring optical characteristics (UV-absorbance) of haloacetic acids, to determine concentration. The entire process can be performed using a completely self-contained, in-situ mechanism that sits at a water distribution point for 24/7 testing, with automated control, monitoring, reporting, and employment of remedial measures (e.g., automated adjustment of the water treatment process).
    Type: Application
    Filed: November 18, 2015
    Publication date: June 16, 2016
    Inventor: Harmesh K. Saini
  • Publication number: 20160123889
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: August 6, 2015
    Publication date: May 5, 2016
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 9222921
    Abstract: A real-time method and analytical system for determining haloacetic acids in water which operate by: (1) extracting samples on ion-exchange absorbent medium; (2) concentrating haloacetic acids on hyper-crosslinked medium; (3) eluting the analytes from the concentration medium for injection into an HPLC system; (4) separating individual haloacetic acid in reverse-phase chromatography performed by the HPLC system; and (5) measuring optical characteristics (UV-absorbance) of haloacetic acids, to determine concentration. The entire process can be performed using a completely self-contained, in-situ mechanism that sits at a water distribution point for 24/7 testing, with automated control, monitoring, reporting, and employment of remedial measures (e.g., automated adjustment of the water treatment process).
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 29, 2015
    Inventor: Harmesh K. Saini
  • Patent number: 9134290
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 15, 2015
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20140099727
    Abstract: Techniques related to printing using a metal-surface charging element. A printing system includes a metal-surface charging element and a power supply. The charging element is disposed to deposit electric charge on an imaging surface. The power supply may provide electric power with an alternating current (AC) component and a direct current (DC) component to the charging element.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 10, 2014
    Inventor: Harmesh K. Saini
  • Publication number: 20130029427
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: April 14, 2011
    Publication date: January 31, 2013
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20090189068
    Abstract: In one embodiment, a method of analyzing silica species in a phosphoric acid solution includes the acts of: processing a sample of the phosphoric acid solution through an anion exchange resin to provide a processed sample; and analyzing the processed sample to determine a concentration of at least one silica species in the phosphoric acid solution.
    Type: Application
    Filed: October 3, 2008
    Publication date: July 30, 2009
    Inventor: Harmesh K. Saini
  • Publication number: 20090068749
    Abstract: In accordance with the present invention, an organic additive is characterized in the presence of an acidic metal plating matrix in a metal plating solution by: providing a sample from the metal plating solution; activating a metal-complexing resin with a weak acid to provide an activated metal-complexing resin; eluting the sample through the activated metal-complexing resin to form a treated sample in which a concentration of the acidic metal plating matrix is reduced; and determining a concentration of an organic additive in the metal plating solution by analyzing the treated sample.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 12, 2009
    Inventor: Harmesh K. Saini
  • Patent number: 7387720
    Abstract: An electrolytic method and apparatus for treating a solution sample allowing for the accurate and substantially real-time and on-line analysis of trace contaminants in the solution sample. The method of the present invention includes two stages. The solution sample is electrolyzed during a first stage to decompose the matrix, thereby substantially neutralizing the matrix, while during a second stage deposited or precipitated metals are recovered and/or stabilized in solution. An apparatus for carrying out the method is also disclosed.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 17, 2008
    Assignee: Metara, Inc.
    Inventor: Harmesh K. Saini