Patents by Inventor Harmon C. Fowler

Harmon C. Fowler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8511617
    Abstract: A method for implementing a satellite fleet includes launching a group of satellites within a launch vehicle. In an embodiment, the satellites are structurally connected together through satellite outer load paths. After separation from the launch vehicle, nodal separation between the satellites is established by allowing one or more of the satellites to drift at one or more orbits having apogee altitudes below an operational orbit apogee altitude. A satellite is maintained in an ecliptic normal attitude during its operational life, in an embodiment. The satellite's orbit is efficiently maintained by a combination of axial, radial, and canted thrusters, in an embodiment. Satellite embodiments include a payload subsystem, a bus subsystem, an outer load path support structure, antenna assembly orientation mechanisms, an attitude control subsystem adapted to maintain the satellite in the ecliptic normal attitude, and an orbit maintenance/propulsion subsystem adapted to maintain the satellite's orbit.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: August 20, 2013
    Assignee: The Boeing Company
    Inventors: Glenn N. Caplin, Harold A. Rosen, Harmon C. Fowler
  • Patent number: 8016240
    Abstract: A method for implementing a satellite fleet includes launching a group of satellites within a launch vehicle. In an embodiment, the satellites are structurally connected together through satellite outer load paths. After separation from the launch vehicle, nodal separation between the satellites is established by allowing one or more of the satellites to drift at one or more orbits having apogee altitudes below an operational orbit apogee altitude. A satellite is maintained in an ecliptic normal attitude during its operational life, in an embodiment. The satellite's orbit is efficiently maintained by a combination of axial, radial, and canted thrusters, in an embodiment. Satellite embodiments include a payload subsystem, a bus subsystem, an outer load path support structure, antenna assembly orientation mechanisms, an attitude control subsystem adapted to maintain the satellite in the ecliptic normal attitude, and an orbit maintenance/propulsion subsystem adapted to maintain the satellite's orbit.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 13, 2011
    Assignee: The Boeing Company
    Inventors: Glenn N. Caplin, Harold A. Rosen, Harmon C. Fowler
  • Patent number: 7664578
    Abstract: A method for minimizing the amount of propellant required to be carried onboard the satellites of an Earth orbiting satellite constellation to maintain the minimum angle of elevation between a selected geographical area of the Earth and at least one satellite of the constellation during the life of the constellation includes establishing an optimal initial inclination and RAAN of each satellite of the constellation. The method enables the satellites of the constellation to carry additional hardware and other payload mass, or alternatively, the design life of the constellation to be increased.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 16, 2010
    Assignee: The Boeing Company
    Inventors: Harmon C. Fowler, Peterson L. Browning
  • Publication number: 20090224105
    Abstract: A method for implementing a satellite fleet includes launching a group of satellites within a launch vehicle. In an embodiment, the satellites are structurally connected together through satellite outer load paths. After separation from the launch vehicle, nodal separation between the satellites is established by allowing one or more of the satellites to drift at one or more orbits having apogee altitudes below an operational orbit apogee altitude. A satellite is maintained in an ecliptic normal attitude during its operational life, in an embodiment. The satellite's orbit is efficiently maintained by a combination of axial, radial, and canted thrusters, in an embodiment. Satellite embodiments include a payload subsystem, a bus subsystem, an outer load path support structure, antenna assembly orientation mechanisms, an attitude control subsystem adapted to maintain the satellite in the ecliptic normal attitude, and an orbit maintenance/propulsion subsystem adapted to maintain the satellite's orbit.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 10, 2009
    Applicant: The Boeing Company
    Inventors: Glenn N. Caplin, Harold A. Rosen, Harmon C. Fowler
  • Publication number: 20080237399
    Abstract: A method for implementing a satellite fleet includes launching a group of satellites within a launch vehicle. In an embodiment, the satellites are structurally connected together through satellite outer load paths. After separation from the launch vehicle, nodal separation between the satellites is established by allowing one or more of the satellites to drift at one or more orbits having apogee altitudes below an operational orbit apogee altitude. A satellite is maintained in an ecliptic normal attitude during its operational life, in an embodiment. The satellite's orbit is efficiently maintained by a combination of axial, radial, and canted thrusters, in an embodiment. Satellite embodiments include a payload subsystem, a bus subsystem, an outer load path support structure, antenna assembly orientation mechanisms, an attitude control subsystem adapted to maintain the satellite in the ecliptic normal attitude, and an orbit maintenance/propulsion subsystem adapted to maintain the satellite's orbit.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: Glenn N. Caplin, Harold A. Rosen, Harmon C. Fowler
  • Publication number: 20080027595
    Abstract: A method for minimizing the amount of propellant required to be carried onboard the satellites of an Earth orbiting satellite constellation to maintain the minimum angle of elevation between a selected geographical area of the Earth and at least one satellite of the constellation during the life of the constellation includes establishing an optimal initial inclination and RAAN of each satellite of the constellation. The method enables the satellites of the constellation to carry additional hardware and other payload mass, or alternatively, the design life of the constellation to be increased.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Harmon C. Fowler, Peterson L. Browning