Patents by Inventor Harold A. Clark

Harold A. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10192927
    Abstract: A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region. A first wiring structure is formed overlying the first dielectric material. The method forms one or more first structure comprising a junction material overlying the first wiring structure. A second structure comprising a stack of material is formed overlying the first structure. The second structure includes a resistive switching material, an active conductive material overlying the resistive switching material, and a second wiring material overlying the active conductive material. The second structure is configured such that the resistive switching material is free from a coincident vertical sidewall region with the junction material.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 29, 2019
    Assignee: CROSSBAR, INC.
    Inventors: Mark Harold Clark, Natividad Vasquez, Steven Maxwell
  • Patent number: 9601690
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichiometric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 21, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Harry Yue Gee, Mark Harold Clark, Steven Patrick Maxwell, Sung Hyun Jo, Natividad Vasquez, Jr.
  • Patent number: 9583701
    Abstract: A memory device comprising a doped conductive polycrystalline layer having an electrically resistive portion, is described herein. By way of example, ion implantation to a subset of the conductive polycrystalline layer can degrade and modify the polycrystalline layer, forming the electrically resistive portion. The electrically resistive portion can include resistive switching properties facilitating digital information storage. Parametric control of the ion implantation can facilitate control over corresponding resistive switching properties of the resistive portion. For example, a projected range or depth of the ion implantation can be controlled, allowing for preferential placement of atoms in the resistive portion, and fine-tuning of a forming voltage of the memory device. As another example, dose and number of atoms implanted, type of atoms or ions that are implanted, the conductive polycrystalline material used, and so forth, can facilitate control over switching characteristics of the memory device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 28, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Harry Yue Gee, Steven Patrick Maxwell, Natividad Vasquez, Jr., Mark Harold Clark
  • Patent number: 9412790
    Abstract: A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region. A first wiring structure is formed overlying the first dielectric material. The method forms one or more first structure comprising a junction material overlying the first wiring structure. A second structure comprising a stack of material is formed overlying the first structure. The second structure includes a resistive switching material, an active conductive material overlying the resistive switching material, and a second wiring material overlying the active conductive material. The second structure is configured such that the resistive switching material is free from a coincident vertical sidewall region with the junction material.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 9, 2016
    Assignee: Crossbar, Inc.
    Inventors: Mark Harold Clark, Natividad Vasquez, Steven Maxwell
  • Patent number: 9269897
    Abstract: A method of forming a resistive device includes forming a first wiring layer overlying a first dielectric on top of a substrate, forming a junction material, patterning the first wiring layer and junction material to expose a portion of the first dielectric, forming a second dielectric over the patterned first wiring layer, forming an opening in the second dielectric to expose a portion of the junction material, forming a resistive switching material over the portion of the junction material in the opening, the resistive switching material having an intrinsic semiconductor characteristic, forming a conductive material over the resistive switching material, etching the conductive material and the resistive switching material to expose respective sidewalls of the resistive switching material and the conductive material, and the second dielectric, and forming a second wiring layer over the conductive material in contact with the respective sidewalls and the second dielectric.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: February 23, 2016
    Assignee: Crossbar, Inc.
    Inventor: Mark Harold Clark
  • Patent number: 9252191
    Abstract: A method of forming a non-volatile memory device includes providing a substrate having a surface, depositing a dielectric overlying the surface, forming a first wiring structure overlying the dielectric, depositing silicon material overlying the first wiring structure, the silicon layer having a thickness of less than about 100 Angstroms, depositing silicon germanium material at a temperature raging from about 400 to about 490 Degrees Celsius overlying the first wiring structure using the silicon layer as a seed layer, wherein the silicon germanium material is substantially free of voids and has polycrystalline characteristics, depositing resistive switching material (e.g. amorphous silicon material) overlying the silicon germanium material, depositing a conductive material overlying the resistive material, and forming a second wiring structure overlying the conductive material.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 2, 2016
    Assignee: Crossbar, Inc.
    Inventors: Mark Harold Clark, Scott Brad Herner
  • Patent number: 9166163
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichimetric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 20, 2015
    Assignee: Crossbar, Inc.
    Inventors: Harry Yue Gee, Mark Harold Clark, Steven Patrick Maxwell, Sung Hyun Jo, Natividad Vasquez, Jr.
  • Patent number: 9070859
    Abstract: A method of forming a non-volatile memory device, includes providing a substrate, forming a first dielectric over the substrate, forming a first wiring structure over the first dielectric, forming a first conductor in contact with the first wiring structure, forming a polycrystalline p+ SiGe material over the first conductor at a deposition temperature ranging from about 350 to about 500 Degrees Celsius, forming a polycrystalline silicon conformally over the SiGe material using the SiGe material as a lattice template at a deposition temperature within about 350 to about 500 Degrees Celsius, the polycrystalline silicon having an intrinsic semiconductor characteristic, forming a second conductor over the polycrystalline silicon in physical and electric contact with the resistive polycrystalline silicon, and forming a second wiring structure over the second conductor.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 30, 2015
    Assignee: Crossbar, Inc.
    Inventor: Mark Harold Clark
  • Patent number: 8946667
    Abstract: A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region of the substrate. A first wiring structure overlies the first dielectric material. The method forms a first electrode material overlying the first wiring structure and a resistive switching material comprising overlying the first electrode material. An active metal material is formed overlying the resistive switching material. The active metal material is configured to form an active metal region in the resistive switching material upon application of a thermal energy characterized by a temperature no less than about 100 Degree Celsius. In a specific embodiment, the method forms a blocking material interposing the active metal material and the resistive switching material to inhibit formation of the active metal region in the resistive switching material during the subsequent processing steps.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 3, 2015
    Assignee: Crossbar, Inc.
    Inventors: Mark Harold Clark, Steven Maxwell, Harry Gee, Natividad Vasquez
  • Publication number: 20140312297
    Abstract: A method of forming a resistive device includes forming a first wiring layer overlying a first dielectric on top of a substrate, forming a junction material, patterning the first wiring layer and junction material to expose a portion of the first dielectric, forming a second dielectric over the patterned first wiring layer, forming an opening in the second dielectric to expose a portion of the junction material, forming a resistive switching material over the portion of the junction material in the opening, the resistive switching material having an intrinsic semiconductor characteristic, forming a conductive material over the resistive switching material, etching the conductive material and the resistive switching material to expose respective sidewalls of the resistive switching material and the conductive material, and the second dielectric, and forming a second wiring layer over the conductive material in contact with the respective sidewalls and the second dielectric.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 23, 2014
    Inventor: Mark Harold CLARK
  • Patent number: 8796102
    Abstract: A method of forming a resistive device includes forming a first wiring layer overlying a first dielectric on top of a substrate, forming a junction material, patterning the first wiring layer and junction material to expose a portion of the first dielectric, forming a second dielectric over the patterned first wiring layer, forming an opening in the second dielectric to expose a portion of the junction material, forming a resistive switching material over the portion of the junction material in the opening, the resistive switching material having an intrinsic semiconductor characteristic, forming a conductive material over the resistive switching material, etching the conductive material and the resistive switching material to expose respective sidewalls of the resistive switching material and the conductive material, and the second dielectric, and forming a second wiring layer over the conductive material in contact with the respective sidewalls and the second dielectric.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: August 5, 2014
    Assignee: Crossbar, Inc.
    Inventor: Mark Harold Clark
  • Publication number: 20140145135
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichimetric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
    Type: Application
    Filed: September 13, 2013
    Publication date: May 29, 2014
    Applicant: Crossbar, Inc.
    Inventors: Harry Yue GEE, Mark Harold CLARK, Steven Patrick MAXWELL, Sung Hyun JO, Natividad VASQUEZ, JR.
  • Patent number: 8450710
    Abstract: A method for forming a non-volatile memory device includes forming a dielectric material overlying a semiconductor substrate, forming a first wiring structure overlying the first dielectric material, depositing an undoped amorphous silicon layer, depositing an aluminum layer over the amorphous silicon layer at a temperature of about 450 Degrees Celsius or lower, annealing the amorphous silicon and aluminum at a temperature of about 450 Degrees Celsius or lower to form a p+ polycrystalline layer, depositing a resistive switching material comprising an amorphous silicon material overlying the polycrystalline silicon material, forming a second wiring structure comprising a metal material overlying the resistive switching material.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: May 28, 2013
    Assignee: Crossbar, Inc.
    Inventor: Mark Harold Clark
  • Publication number: 20130020548
    Abstract: A method of forming a non-volatile memory device includes providing a substrate having a surface, depositing a dielectric overlying the surface, forming a first wiring structure overlying the dielectric, depositing silicon material overlying the first wiring structure, the silicon layer having a thickness of less than about 100 Angstroms, depositing silicon germanium material at a temperature raging from about 400 to about 490 Degrees Celsius overlying the first wiring structure using the silicon layer as a seed layer, wherein the silicon germanium material is substantially free of voids and has polycrystalline characteristics, depositing resistive switching material (e.g. amorphous silicon material) overlying the silicon germanium material, depositing a conductive material overlying the resistive material, and forming a second wiring structure overlying the conductive material.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 24, 2013
    Applicant: Crossbar, Inc.
    Inventors: Mark Harold CLARK, Scott Brad Herner
  • Publication number: 20120298947
    Abstract: A method for forming a non-volatile memory device includes forming a dielectric material overlying a semiconductor substrate, forming a first wiring structure overlying the first dielectric material, depositing an undoped amorphous silicon layer, depositing an aluminum layer over the amorphous silicon layer at a temperature of about 450 Degrees Celsius or lower, annealing the amorphous silicon and aluminum at a temperature of about 450 Degrees Celsius or lower to form a p+ polycrystalline layer, depositing a resistive switching material comprising an amorphous silicon material overlying the polycrystalline silicon material, forming a second wiring structure comprising a metal material overlying the resistive switching material.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: Crossbar, Inc.
    Inventor: Mark Harold CLARK
  • Patent number: 4559902
    Abstract: There is described a method and apparatus for holding and cultivating aquatic crustaceans and like shellfish. The apparatus comprises a well for holding water, a plurality of buoyant trays each sub-divided into a plurality of compartments sized to house a crustacean and having a perforated bottom, the trays being adapted for submersion within the well to form a column of trays whereby the weight of one tray maintains the trays beneath it in a submerged condition. The apparatus further includes an airlift to simultaneously lift water from the vicinity of the bottom of the well for recirculation to the top of the well and to aerate the water as it is being lifted. There is further included an outlet to introduce a supply of fresh extraneous water to the top of the well and to drain water from the bottom of the well in amounts corresponding substantially to that added to the top of the well.
    Type: Grant
    Filed: May 24, 1984
    Date of Patent: December 24, 1985
    Assignee: Hugh Paton
    Inventors: Edgar G. Mason, Harold Clark, James A. Forsythe
  • Patent number: 4239668
    Abstract: What is disclosed is a composition of matter which is an aqueous dispersion of an organothiolsilsesquioxane and colloidal silica which is useful as an adhesion promoter for siloxane resins which have a low degree of substitution.
    Type: Grant
    Filed: November 20, 1978
    Date of Patent: December 16, 1980
    Assignee: Dow Corning Corporation
    Inventors: Harold A. Clark, Loren A. Haluska
  • Patent number: 4180432
    Abstract: Silicon dioxide is etched at about five times the rate of silicon in a moderate vacuum gas plasma formed from a mixture of CF.sub.4 and oxygen wherein the mixture contains above about 5 to about 15 percent by volume CF.sub.4 so that films of silicon dioxide on silicon can be etched to the silicon surface without excessive attack on the silicon. Silicon dioxide is etched at about three times the rate of silicon nitride so that silicon nitride can be used as an etch mask for the process.
    Type: Grant
    Filed: December 19, 1977
    Date of Patent: December 25, 1979
    Assignee: International Business Machines Corporation
    Inventor: Harold A. Clark
  • Patent number: 4027073
    Abstract: An acidic dispersion of colloidal silica and hydroxylated silsesquioxane in an alcohol-water medium is coated onto solid substrates, such as acrylic lenses, to provide an abrasion resistant coating.
    Type: Grant
    Filed: June 21, 1976
    Date of Patent: May 31, 1977
    Assignee: Dow Corning Corporation
    Inventor: Harold A. Clark
  • Patent number: D426409
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 13, 2000
    Inventors: Harold Clark, Joseph Lockhart, David Weeks