Patents by Inventor Harold Lamar Jordan, Jr.

Harold Lamar Jordan, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11585234
    Abstract: Systems, program products, and methods for detecting thermal stability within gas turbine systems are disclosed. The systems may include a computing device(s) in communication with a gas turbine system, and a plurality of sensors positioned within or adjacent the gas turbine system. The sensor(s) may measure operational characteristics of the gas turbine system. The computing device(s) may be configured to detect thermal stability within the gas turbine system by performing processes including calculating a lag output for each of the plurality of measured operational characteristics. The calculated lag output may be based on a difference between a calculated lag for the measured operational characteristics and the measured operational characteristic itself. The calculated lag output may be also be based on a time constant for the measured operational characteristics. The computing device(s) may also determine when each of the calculated lag outputs are below a predetermined threshold.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 21, 2023
    Assignee: General Electric Company
    Inventors: Veerappan Muthaiah, Timothy Andrew Healy, Randy Scott Rosson, Harold Lamar Jordan, Jr., Kowshik Narayanaswamy
  • Publication number: 20210324757
    Abstract: The present disclosure is direct to a system for regulating a velocity of gases in a turbomachine. The system includes an exhaust section of the turbomachine. The system also includes a damper having an actuator and a restriction. The damper is positioned within the exhaust section and is operable to adjust the velocity of the gases based on a position of the restriction. The system further includes a controller communicatively coupled to the damper. The controller is configured to control the position of the restriction to regulate the velocity of the gases relative to a predetermined velocity range.
    Type: Application
    Filed: May 21, 2021
    Publication date: October 21, 2021
    Inventors: Bradly Aaron Kippel, Raymond Pang, Scott Richard Baker, Harold Lamar Jordan, JR., Rex Allen Morgan, Kamlesh Mundra
  • Publication number: 20210277794
    Abstract: Systems, program products, and methods for detecting thermal stability within gas turbine systems are disclosed. The systems may include a computing device(s) in communication with a gas turbine system, and a plurality of sensors positioned within or adjacent the gas turbine system. The sensor(s) may measure operational characteristics of the gas turbine system. The computing device(s) may be configured to detect thermal stability within the gas turbine system by performing processes including calculating a lag output for each of the plurality of measured operational characteristics. The calculated lag output may be based on a difference between a calculated lag for the measured operational characteristics and the measured operational characteristic itself. The calculated lag output may be also be based on a time constant for the measured operational characteristics. The computing device(s) may also determine when each of the calculated lag outputs are below a predetermined threshold.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 9, 2021
    Inventors: Veerappan Muthaiah, Timothy Andrew Healy, Randy Scott Rosson, Harold Lamar Jordan, JR., Kowshik Narayanaswamy
  • Patent number: 10458342
    Abstract: A system for controlling a gas turbine power plant includes a plurality of sensors configured to transmit signals indicative of one or more operating parameters of the gas turbine, and a control system in electronic communication with each sensor. The control system is configured to compute cumulative wear for one or more hardware components of the gas turbine based at least in part on the signals. Instructions are inputted into the control system which indicates a desired operational mode for the gas turbine. The control system may then compute a hardware consumption rate based at least in part on the cumulative wear. The hardware consumption rate may then be displayed to an operator via a display device. The operator may use the hardware consumption rate to determine potential economic impact of operating the gas turbine at the desired operational mode.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 29, 2019
    Assignee: General Electric Company
    Inventors: Rex Allen Morgan, James Tyson Balkcum, III, Stephen R. Watts, Harold Lamar Jordan, Jr., Brad Wilson VanTassel
  • Patent number: 10267185
    Abstract: A system may include an exhaust conduit configured to route an exhaust gas from an engine to a heat recovery steam generator (HRSG). The system may also include a coolant supply coupled to the exhaust conduit. The coolant supply is configured to supply a coolant to the exhaust conduit. Additionally, the system may include a controller configured to control the coolant supply to control an exhaust temperature of the exhaust gas flowing through the exhaust conduit from the engine to the HRSG, or a steam temperature of steam generated by the HRSG, or a combination thereof. The controller may be configured to control the coolant supply differently in a full load condition relative to a part load condition of the system.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 23, 2019
    Assignee: General Electric Company
    Inventors: Harold Lamar Jordan, Jr., Kevin Wood Wilkes, John Edward Sholes, Yamil Miguel Morales Valvieja, John D Memmer
  • Patent number: 10253652
    Abstract: A system for controlling gas turbine output for a gas turbine power plant is disclosed herein. The power plant includes a gas turbine including a combustor downstream from a compressor, a turbine downstream from the combustor and an exhaust duct downstream from the outlet of the turbine. The exhaust duct receives exhaust gas from the turbine outlet. The system further includes an exhaust damper operably connected to a downstream end of the exhaust duct. The exhaust damper increases backpressure at the turbine outlet and restricts axial exit velocity of the exhaust gas exiting the turbine outlet when the exhaust damper is partially closed. A method for controlling gas turbine output is also provided herein.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: George Vargese Mathai, Alston Ilford Scipio, Harold Lamar Jordan, Jr., Sanji Ekanayake, Joseph Philip Klosinski
  • Publication number: 20180230849
    Abstract: The present disclosure is direct to a system for regulating a velocity of gases in a turbomachine. The system includes an exhaust section of the turbomachine. The system also includes a damper having an actuator and a restriction. The damper is positioned within the exhaust section and is operable to adjust the velocity of the gases based on a position of the restriction. The system further includes a controller communicatively coupled to the damper. The controller is configured to control the position of the restriction to regulate the velocity of the gases relative to a predetermined velocity range.
    Type: Application
    Filed: December 19, 2016
    Publication date: August 16, 2018
    Inventors: Bradly Aaron Kippel, Raymond Pang, Scott Richard Baker, Harold Lamar Jordan, JR., Rex Allen Morgan, Kamlesh Mundra
  • Patent number: 9903231
    Abstract: A system for warming up a steam turbine includes a gas turbine and a controller operably connected to the gas turbine. The controller is programmed to receive a plurality of measured input signals and control the gas turbine to produce an exhaust having a desired energy. A first measured input signal is reflective of a measured operating parameter of the gas turbine and a second measured input signal is reflective of an operating parameter of the steam turbine. A method for warming up a steam turbine includes sending a plurality of measured input signals to a controller, wherein a first measured input signal reflects a measured operating parameter of a gas turbine and a second measured input signal reflects an operating parameter of the steam turbine. The method further includes controlling the gas turbine based on the plurality of measured input signals and producing an exhaust from the gas turbine, wherein the exhaust has a desired energy.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 27, 2018
    Assignee: General Electric Company
    Inventors: Harold Lamar Jordan, Jr., TsungPo Lin, John Edward Sholes, Jr.
  • Patent number: 9882454
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring an actual emissions value for each GT during the adjusting of the respective power output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and a nominal emissions value at the ambient condition.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9879614
    Abstract: Commanding GTs to base load level based upon measured ambient condition for each GT; commanding each GT to adjust a power output to match scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring actual emissions value for each GT during the adjusting of the respective power output; adjusting operating condition of each GT based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and emissions scale factor; updating a pre-existing emissions model for each GT based upon the adjusted operating; running set of operating conditions on each GT and measuring updated parameters for each GT including an updated emissions value; and refining updated pre-existing emissions model based upon a difference between the updated emissions value and the updated pre-existing emissions model.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Timothy Andrew Healy, Rebecca Kathryn Jaiven, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9879613
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and modeling an emissions value for the GT during the adjusting of the respective power output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective modelled emissions value, a nominal emissions value at the ambient condition and a nominal emissions value at the ambient condition.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9879612
    Abstract: Commanding GTs to base load level based upon measured ambient condition for each GT; commanding each GT to adjust a power output to match scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring actual emissions value for each GT during the adjusting of the respective power output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and an emissions scale factor, wherein the nominal emissions value at the ambient condition and the emissions scale factor are stored in a pre-existing emissions model for the GT.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Timothy Andrew Healy, Rebecca Kathryn Jaiven, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9879615
    Abstract: A system includes: a computing device configured to tune a set of gas turbines (GTs) by: commanding each GT to a base load level; commanding each GT to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; updating a pre-existing emissions model for each GT based upon the adjusted operating condition; running a set of operating conditions on each GT and measuring an updated emissions value; and refining the updated pre-existing emissions model based upon a difference between the updated emissions value and the updated pre-existing emissions model.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Timothy Andrew Healy, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9856797
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: modelling each GT in the set of GTs at a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and measuring an actual emissions value for each GT during the adjusting of the respective power output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and a nominal emissions value at the ambient condition.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 2, 2018
    Assignee: General Electric Company
    Inventors: Rex Allen Morgan, Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr.
  • Patent number: 9856796
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a scaled power output value equal to a fraction of a difference between the respective power output and a nominal power output value, and subsequently measuring an actual emissions value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value, a nominal emissions value at the ambient condition and a nominal emissions value at the ambient condition.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 2, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9803561
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective output to match a nominal mega-watt power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and calculating a degradation for each GT in the set of GTs over a period.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9797315
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and setting a target operating condition for each GT to match the adjusted operating condition after the adjusting of the operating condition.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 24, 2017
    Assignee: General Electric Company
    Inventors: Harold Lamar Jordan, Jr., Lewis Berkley Davis, Jr., Scott Arthur Day, David Spencer Ewens, Rex Allen Morgan
  • Patent number: 9790865
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective power output to match a nominal power output value, and subsequently measuring an actual emissions value for each GT; adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition; and building an independent emissions model for each GT based upon the measured actual emissions value for each GT and the adjusted operating condition of each GT.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 17, 2017
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Timothy Andrew Healy, Harold Lamar Jordan, Jr., Rex Allen Morgan
  • Patent number: 9784183
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective output to match a nominal mega-watt power output value, and subsequently measuring an actual fuel flow value and an actual emissions value for each GT; adjusting at least one of a fuel flow or a water flow for each GT to an adjusted water/fuel ratio in response to the actual emissions value deviating from an emissions level associated with the base load level, while maintaining the respective adjusted output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual fuel flow value and a nominal fuel flow value at the ambient condition, while maintaining the adjusted water/fuel ratio.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 10, 2017
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Harold Lamar Jordan, Jr., Rex Allen Morgan, Raub Warfield Smith
  • Patent number: 9771875
    Abstract: Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective output to match a nominal mega-watt power output value, and subsequently measuring an actual emissions value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: September 26, 2017
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Scott Arthur Day, Harold Lamar Jordan, Jr., Rex Allen Morgan