Patents by Inventor Harpreet Singh

Harpreet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230058272
    Abstract: An angle grind coating apparatus and method for providing a coating onto materials is described. The angle grind coating apparatus comprising workpiece holder (102) assembled for holding tool material (104) and is assembled over base (106) provided over a fixture (108). The workpiece holder (102) has a spring assembly (110) to apply an upward thrust force to the tool material (104) and a grinding wheel (114) is mounted perpendicular to the workpiece holder (102) to enable grinding of the tool material (104) fixed in front and just below the grinding wheel (114) to align the fixture (108) with the grinding wheel (114).
    Type: Application
    Filed: July 1, 2022
    Publication date: February 23, 2023
    Inventors: Malkeet SINGH, Harpreet SINGH, Christopher Charles BERNDT
  • Publication number: 20230051035
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 16, 2023
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20230051523
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 16, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230046543
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 16, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 11576954
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: February 14, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11576955
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: February 14, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20230043654
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 19, 2022
    Publication date: February 9, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230042253
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 9, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230042461
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 9, 2022
    Publication date: February 9, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230040789
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 17, 2022
    Publication date: February 9, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230035702
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 9, 2022
    Publication date: February 2, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230037160
    Abstract: Embodiments of the present disclosure provide for structures including an alloy of calcium, strontium, and magnesium.
    Type: Application
    Filed: September 27, 2022
    Publication date: February 2, 2023
    Inventors: Michele Viola Manuel, Ida E. Svensson Berglund, Benjamin G. Keselowsky, Malisa Sarntinoranont, Harpreet Singh Brar, Hunter B. Henderson
  • Patent number: 11567460
    Abstract: Provided is a system and method for training and validating models in a machine learning pipeline for failure mode analytics. The machine learning pipeline may include an unsupervised training phase, a validation phase and a supervised training and scoring phase. In one example, the method may include receiving a request to create a machine learning model for failure mode detection associated with an asset, retrieving historical notification data of the asset, generating an unsupervised machine learning model via unsupervised learning on the historical notification data, wherein the unsupervised learning comprises identifying failure topics from text included in the historical notification data and mapping the identified failure topics to a plurality of predefined failure modes for the asset, and storing the generated unsupervised machine learning model via a storage device.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 31, 2023
    Assignee: SAP SE
    Inventors: Lukas Carullo, Patrick Brose, Kun Bao, Anubhav Bhatia, Rashmi Shetty B, Leonard Brzezinski, Lauren McMullen, Harpreet Singh, Karthik Mohan Mokashi, Simon Lee
  • Publication number: 20230023408
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 26, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230021673
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: August 26, 2022
    Publication date: January 26, 2023
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 11559572
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: January 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11562598
    Abstract: Examples are disclosed that relate to representing recorded hand motion. One example provides a computing device comprising a logic subsystem and a storage subsystem comprising instructions executable by the logic subsystem to receive a recorded representation of hand motion determined relative to a virtual model aligned to a first instance of an object, receive image data corresponding to an environment, and recognize a second instance of the object in the environment. The instructions are further executable to align the virtual model to the second instance of the object, and output a parametric representation of hand motion for display relative to the virtual model as aligned to the second instance of the object, such that the parametric representation is spatially consistent with the recorded representation of hand motion relative to the virtual model as aligned to the first instance of the object.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 24, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Harpreet Singh Sawhney, Ning Xu
  • Publication number: 20230019745
    Abstract: Examples are disclosed that relate to computer-based tracking of a process performed by a user. In one example, multi-modal sensor information is received via a plurality of sensors. A world state of a real-world physical environment and a user state in the real-world physical environment are tracked based on the multi-modal sensor information. A process being performed by the user within a working domain is recognized based on the world state and the user state. A current step in the process is detected based on the world state and the user state. Domain-specific instructions directing the user how to perform an expected action are presented via a user interface device. A user action is detected based on the world state and the user state. Based on the user action differing from the expected action, domain-specific guidance to perform the expected action is presented via the user interface device.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 19, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Harpreet Singh SAWHNEY, Bugra TEKIN
  • Patent number: 11554164
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: January 17, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20230012265
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 12, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH