Patents by Inventor Harpreet Singh

Harpreet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210346465
    Abstract: A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Inventors: Jens FRITSCHE, Toni WEINSCHENK, Steffen WALTER, Peter LEWANDROWSKI, Harpreet SINGH
  • Publication number: 20210350491
    Abstract: In some embodiments, the present invention provides an exemplary computer system that includes at least the following components: at least one processor; a non-transitory memory storing software instructions; and where, when executing the software instructions by the processor, the computer system is configured to perform at least: controlling a plurality of first software objects; controlling a plurality of second software objects; controlling a plurality of third software object; where each software object includes at least one property programmed with at least one trigger condition and at least one programmed action; where the at least one pre-programmed action is configured to dynamically change a value of at least one property of at least one other software object based on: i) the at least one trigger condition; and ii) a value of at least one other property.
    Type: Application
    Filed: June 30, 2021
    Publication date: November 11, 2021
    Inventors: Diane Agerton Dyess, Joel Walter Denton, Andrew William Dubowec, Shawn Michael Fleming, Justin Jerry Hibbs, Troy Wayne Kirchenbauer, Peter Laundy, Russell Francis Lewis, John Walter Mallinckrodt, II, Krzysztof Musial, Harpreet Singh, Scott Michael Willey
  • Publication number: 20210347822
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 30 peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Inventors: Toni WEINSCHENK, Oliver SCHOOR, Claudia TRAUTWEIN, Norbert HILF, Steffen WALTER, Harpreet SINGH
  • Patent number: 11168122
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 9, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20210340203
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Inventors: Colette SONG, Franziska HOFFGAARD, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20210340204
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 9, 2021
    Publication date: November 4, 2021
    Inventors: Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20210340202
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 25, 2021
    Publication date: November 4, 2021
    Inventors: Colette SONG, Franziska HOFFGAARD, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 11161091
    Abstract: The present disclosure provides a composition. In an embodiment, the composition includes (A) from 85 wt % to 99 wt % of an olefin-based polymer and (B) from 15 wt % to 1 wt % of an odor suppressant. The odor suppressant is a blend of (i) particles of zinc oxide, and (ii) zinc ionomer. The zinc oxide particles have a D50 particle size from 100 nm to 3000 nm, a surface area from 1 m2/g to 9 m2/g, and a porosity less than 0.020 m3/g. The composition has a methyl mercaptan odor suppression value of less than 70 at 3 days as measured in accordance with ASTM D5504-12.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 2, 2021
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Arkady L. Krasovskiy, Kefu Sun, Keran Lu, Scott T. Matteucci, Alexander Williamson, Jose Eduardo Ruiz, Harpreet Singh, Michelle Gallagher, Jeffrey E. Bonekamp
  • Patent number: 11161879
    Abstract: A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 2, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Steffen Walter, Jens Fritsche, Colette Song, Harpreet Singh
  • Patent number: 11161877
    Abstract: A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 2, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Steffen Walter, Jens Fritsche, Colette Song, Harpreet Singh
  • Patent number: 11161949
    Abstract: The present disclosure provides a film. In an embodiment, a film for suppressing odors is provided and includes a composition of (A) from 85 wt % to 99 wt % of a thermoplastic polymer and (B) from 15 wt % to 1 wt % of an odor suppressant. The odor suppressant is a blend composed of (Bi) particles of zinc oxide and (Bii) zinc ionomer. The zinc oxide particles (Bi) have a D50 particle size from 100 nm to 3000 nm, a surface area from 1 m2/g to 9 m2/g, and a porosity less than 0.020 m3/g. The composition has a methyl mercaptan odor suppression value less than 70 at 3 days exposure to methyl mercaptan as measured in accordance with ASTM D5504-12.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 2, 2021
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Arkady L. Krasovskiy, Kefu Sun, Keran Lu, Scott T. Matteucci, Alexander Williamson, Jose Eduardo Ruiz, Michelle Gallagher, Harpreet Singh
  • Patent number: 11161880
    Abstract: A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 2, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Steffen Walter, Jens Fritsche, Colette Song, Harpreet Singh
  • Patent number: 11161878
    Abstract: A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 2, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Steffen Walter, Jens Fritsche, Colette Song, Harpreet Singh
  • Publication number: 20210330743
    Abstract: A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 28, 2021
    Inventors: Jens FRITSCHE, Toni WEINSCHENK, Steffen WALTER, Peter LEWANDROWSKI, Harpreet SINGH
  • Publication number: 20210330771
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: Colette SONG, Linus BACKERT, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20210330772
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: Colette SONG, Linus BACKERT, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 11155590
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: October 26, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 11155597
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 26, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Lea Stevermann
  • Publication number: 20210322527
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: May 21, 2021
    Publication date: October 21, 2021
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20210326967
    Abstract: According to some embodiments, in an environment where one or more users can view video content on respective user systems, wherein each user system comprises a display screen, systems and methods are provided for enabling at least one user to shop directly from the display screen on a respective user system while viewing video content.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Inventors: Harpreet Singh Geekee, Gurpreet Singh Rai, Christopher James Kelly