Patents by Inventor Harpreet Singh

Harpreet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392194
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 17, 2020
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 10865180
    Abstract: The present invention, discloses optically pure compounds of l-Norepinephrine and its acid addition salts and hydrates and process for the preparation thereof. Specifically, the present invention discloses optically pure compounds of l-Norepinephrine bitartrate, its process of preparation and pharmaceutical compositions comprising the same.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: December 15, 2020
    Assignee: HARMAN FINOCHEM LIMITED
    Inventors: Vijay Trimbak Kadam, Nareesh Saranapu, Amin Rashid Shaikh, Harpreet Singh Minhas, Gurpreet Singh Minhas
  • Publication number: 20200384093
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 10, 2020
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Claudia WAGNER, Julia LEIBOLD, Colette SONG
  • Publication number: 20200372715
    Abstract: A method for object recognition includes, at a computing device, receiving an image of a real-world object. An identity of the real-world object is recognized using an object recognition model trained on a plurality of computer-generated training images. A digital augmentation model corresponding to the real-world object is retrieved, the digital augmentation model including a set of augmentation-specific instructions. A pose of the digital augmentation model is aligned with a pose of the real-world object. An augmentation is provided, the augmentation associated with the real-world object and specified by the augmentation-specific instructions.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Harpreet Singh SAWHNEY, Andrey KONIN, Bilha-Catherine W. GITHINJI, Amol Ashok AMBARDEKAR, William Douglas GUYMAN, Muhammad Zeeshan ZIA, Ning XU, Sheng Kai TANG, Pedro URBINA ESCOS
  • Patent number: 10842817
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: November 24, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10835920
    Abstract: Disclosed is a technology being implemented in an apparatus for coating a substrate with swarf particles. The apparatus facilitates depositing metal coating onto metal surfaces, polymers, and ceramics. In this apparatus, the grinding process is retrofitted to deposit coatings onto substrates that range from soft (e.g., polymers and aluminium) to hard (e.g., glass-ceramic) materials. The apparatus comprises a sample holder, an infeed, and a grinding wheel. The sample holder holds a substrate to be coated with swarf particles. The infeed holding a work piece. The grinding wheel is mounted at a predefined height over the infeed. The apparatus is used to perform metal coating by depositing the swarf materials on surface of the substrate. It may be noted that the swarf materials are generated by grinding the work piece with the grinding wheel.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 17, 2020
    Assignees: INDIAN INSTITUTE OF TECHNOLOGY ROPAR, SWINBURNE UNIVERSITY OF TECHNOLOGY
    Inventors: Malkeet Singh, Harpreet Singh, Christopher Charles Berndt
  • Patent number: 10835586
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 17, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Colette Song
  • Patent number: 10835587
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: November 17, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10835588
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 17, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10836806
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 17, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 10829537
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 10, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10828357
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 10, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20200345777
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 11 novel peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Application
    Filed: June 3, 2020
    Publication date: November 5, 2020
    Inventors: Toni WEINSCHENK, Oliver SCHOOR, Claudia TRAUTWEIN, Norbert HILF, Steffen WALTER, Harpreet SINGH
  • Patent number: 10822390
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: November 3, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20200339630
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 29, 2020
    Inventors: Andrea MAHR, Toni WEINSCHENK, Colette SONG, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20200339644
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 29, 2020
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20200338175
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 29, 2020
    Inventors: Toni WEINSCHENK, Jens FRITSCHE, Harpreet SINGH, Andrea MAHR, Martina OTT, Claudia WAGNER, Oliver SCHOOR
  • Publication number: 20200339646
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 29, 2020
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20200339645
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 29, 2020
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20200339926
    Abstract: A petri dish has interlock features between the lid and dish that allow single-handed engagement of the lid with the dish by rotation, so that the lid and dish may be raised by grasping only the lid without stabilization of the dish with a second hand. Disengagement is similarly single-handed.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 29, 2020
    Inventors: Aleksandar Relja Wood, Harpreet Singh