Patents by Inventor Harrison BARTLETT

Harrison BARTLETT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883304
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: January 30, 2024
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Almaskhan Baimyshev, Harrison Bartlett, Jantzen Lee
  • Publication number: 20230055765
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 23, 2023
    Inventors: Michael Goldfarb, Almaskhan Baimyshev, Harrison Bartlett, Jantzen Lee
  • Patent number: 11471306
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: October 18, 2022
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Almaskhan Baimyshev, Harrison Bartlett, Jantzen Lee
  • Patent number: 11213408
    Abstract: An asymmetric linear actuator is provided which integrates a hydraulic dissipater and an electric motor and power screw which generates small forces. The actuator is configured so that an electric motor drives a power screw which drives a rod through a cylinder to provide linear actuation. The cylinder is fluid-filled and incorporates a piston that separates the cylinder into a first and second fluid chamber which are filled with a first and second volume of working fluid. Movement of the piston and rod assembly results in fluid movement between the first and second volumes of working fluid and through the fluidic restriction. The fluidic restriction can be proportionally controllable via an electric motor which enables controllable power dissipation via control of the fluidic restriction motor and controllable power generation via control of the power screw motor.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 4, 2022
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Harrison Bartlett, Brian Lawson
  • Patent number: 11131192
    Abstract: A cylinder actuator includes a body assembly and a piston assembly. The body assembly includes a first cylinder nested concentrically within a second cylinder. The piston assembly slides linearly within the first and second cylinders. The piston assembly includes a first piston assembly end and a second piston assembly end. The first piston assembly end includes first and second pistons. The first piston moves within the first cylinder. The second piston moves within the second cylinder. The piston assembly includes first and second piston rods. The first piston rod extends from the first piston through a first end of the first cylinder. The second piston rod extends from the second piston through a first end of the second cylinder. The piston rods are joined at the second end of the piston rod assembly located outside of the first and second cylinders.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 28, 2021
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Harrison Bartlett, Beau Johnson
  • Publication number: 20210128325
    Abstract: An asymmetric linear actuator is provided which integrates a hydraulic dissipater and an electric motor and power screw which generates small forces. The actuator is configured so that an electric motor drives a power screw which drives a rod through a cylinder to provide linear actuation. The cylinder is fluid-filled and incorporates a piston that separates the cylinder into a first and second fluid chamber which are filled with a first and second volume of working fluid. Movement of the piston and rod assembly results in fluid movement between the first and second volumes of working fluid and through the fluidic restriction. The fluidic restriction can be proportionally controllable via an electric motor which enables controllable power dissipation via control of the fluidic restriction motor and controllable power generation via control of the power screw motor.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Inventors: Michael GOLDFARB, Harrison BARTLETT, Brian LAWSON
  • Publication number: 20210059841
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Application
    Filed: January 25, 2019
    Publication date: March 4, 2021
    Inventors: Michael GOLDFARB, Almaskhan BAIMYSHEV, Harrison BARTLETT, Jantzen LEE
  • Patent number: 10925754
    Abstract: An asymmetric linear actuator is provided which integrates a hydraulic dissipater and an electric motor and power screw which generates small forces. The actuator is configured so that an electric motor drives a power screw which drives a rod through a cylinder to provide linear actuation. The cylinder is fluid-filled and incorporates a piston that separates the cylinder into a first and second fluid chamber which are filled with a first and second volume of working fluid. Movement of the piston and rod assembly results in fluid movement between the first and second volumes of working fluid and through the fluidic restriction. The fluidic restriction can be proportionally controllable via an electric motor which enables controllable power dissipation via control of the fluidic restriction motor and controllable power generation via control of the power screw motor.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: February 23, 2021
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Harrison Bartlett, Brian Lawson
  • Publication number: 20210040852
    Abstract: A cylinder actuator includes a body assembly and a piston assembly. The body assembly includes a first cylinder nested concentrically within a second cylinder. The piston assembly slides linearly within the first and second cylinders. The piston assembly includes a first piston assembly end and a second piston assembly end. The first piston assembly end includes first and second pistons. The first piston moves within the first cylinder. The second piston moves within the second cylinder. The piston assembly includes first and second piston rods. The first piston rod extends from the first piston through a first end of the first cylinder. The second piston rod extends from the second piston through a first end of the second cylinder. The piston rods are joined at the second end of the piston rod assembly located outside of the first and second cylinders.
    Type: Application
    Filed: February 1, 2019
    Publication date: February 11, 2021
    Inventors: Michael GOLDFARB, Harrison BARTLETT, Beau JOHNSON
  • Publication number: 20190336309
    Abstract: An asymmetric linear actuator is provided which integrates a hydraulic dissipater and an electric motor and power screw which generates small forces. The actuator is configured so that an electric motor drives a power screw which drives a rod through a cylinder to provide linear actuation. The cylinder is fluid-filled and incorporates a piston that separates the cylinder into a first and second fluid chamber which are filled with a first and second volume of working fluid. Movement of the piston and rod assembly results in fluid movement between the first and second volumes of working fluid and through the fluidic restriction. The fluidic restriction can be proportionally controllable via an electric motor which enables controllable power dissipation via control of the fluidic restriction motor and controllable power generation via control of the power screw motor.
    Type: Application
    Filed: January 16, 2018
    Publication date: November 7, 2019
    Inventors: Michael GOLDFARB, Harrison BARTLETT, Brian LAWSON