Patents by Inventor Harrison Zheng

Harrison Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952116
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: April 9, 2024
    Assignee: Skydio, Inc.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Patent number: 11940795
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: March 26, 2024
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11829141
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may identify a scan target. The UAV may navigate to two or more positions in relation to the scan target. The UAV may capture, using one or more image sensors of the UAV, two or more images of the scan target from different respective positions in relation to the scan target. For instance, the two or more respective positions may be selected by controlling a spacing between the two or more respective positions to enable determination of parallax disparity between a first image captured at a first position and a second image captured at a second position of the two or more positions. The UAV may determine a three-dimensional model corresponding to the scan target based in part on the determined parallax disparity of the two or more images including the first image and the second image.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: November 28, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11829142
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: November 28, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230359205
    Abstract: In some examples, an image of a scan target is presented in a user interface on a display associated with a computing device. The user interface receives at least one user input indicating at least one point in a perimeter or edge of a volume for encompassing the scan target presented in the image of the scan target. A graphical representation of the volume in relation to the image of the scan target is generated in the user interface. Information for defining a location of at least a portion of the volume in three-dimensional space is sent to an unmanned aerial vehicle (UAV) to cause, at least in part, the UAV to scan at least a portion of the scan target corresponding to the volume.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230324911
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.
    Type: Application
    Filed: January 20, 2023
    Publication date: October 12, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230280765
    Abstract: A computer accesses an input element storage and an output element storage. The computer accesses a symbolic expression for output element storage as a function of the input element storage. The computer computes, using a symbolic computation engine of the computer, a symbolic expression for the tangent space Jacobian of the output element storage with respect to an input tangent space. The computer outputs the computed expression.
    Type: Application
    Filed: January 27, 2023
    Publication date: September 7, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244234
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 3, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230244231
    Abstract: A computer accesses a first symbolic expression for an output matrix as a function of an input matrix at a computing device comprising processing circuitry and memory. The computer computes a first Jacobian of the input matrix with respect to an input tangent space. The computer computes a second Jacobian of the output matrix with respect to the input matrix. The computer computes a third Jacobian of an output tangent space with respect to the input matrix. The computer applies symbolic matrix multiplication to the first Jacobian, the second Jacobian, and the third Jacobian to obtain a second symbolic expression for the output tangent space with respect to the input tangent space. The computer provides a representation of the second symbolic expression, the second symbolic expression representing a computed tangent-space Jacobian.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244233
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may identify a scan target. The UAV may navigate to two or more positions in relation to the scan target. The UAV may capture, using one or more image sensors of the UAV, two or more images of the scan target from different respective positions in relation to the scan target. For instance, the two or more respective positions may be selected by controlling a spacing between the two or more respective positions to enable determination of parallax disparity between a first image captured at a first position and a second image captured at a second position of the two or more positions. The UAV may determine a three-dimensional model corresponding to the scan target based in part on the determined parallax disparity of the two or more images including the first image and the second image.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 3, 2023
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230244247
    Abstract: A computer of an unmanned aerial vehicle (UAV) accesses, from a memory unit, a problem definition comprising cost functions associated with travel of the UAV. The computer causes movement of the UAV based on the cost functions. The computer adjusts one or more of the cost functions during a flight of the UAV. The computer causes further movement of the UAV based on the adjusted one or more of the cost functions.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Publication number: 20230244750
    Abstract: A computer accesses a first symbolic expression for an output value as a function of an input value. The computer computes a first symbolic Jacobian of the input value with respect to an input tangent space from a symbolic Lie group definition. The computer computes a second symbolic Jacobian of the output value with respect to the input value. The computer computes a third symbolic Jacobian of an output tangent space with respect to the input value from the symbolic Lie group definition. The computer applies symbolic matrix multiplication to the first symbolic Jacobian, the second symbolic Jacobian, and the third symbolic Jacobian to obtain a second symbolic expression for the output tangent space with respect to the input tangent space. The computer provides a representation of the second symbolic expression.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hayk Martirosyan, Aaron Christopher Miller, Nathan Leo Bucki, Bradley Matthew Solliday, Ryan David Kennedy, Jack Louis Zhu, Teodor Tomic, Yixiao Sun, Josiah Timothy VanderMey, Gareth Benoit Cross, Peter Benjamin Henry, Dominic William Pattison, Samuel Shenghung Wang, Kristen Marie Holtz, Harrison Zheng
  • Patent number: 11703864
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine, based on a three-dimensional (3D) model including a plurality of points corresponding to a scan target, a scan plan for scanning at least a portion of the scan target. For instance, the scan plan may include a plurality of poses for the UAV to assume to capture images of the scan target. The UAV may capture with one or more image sensors, one or more images of the scan target from one or more poses of the plurality of poses. Further, the UAV may determine an update to the 3D model based at least in part on the one or more images. Additionally, the UAV may update the scan plan based at least in part on the update to the 3D model.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: July 18, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11573544
    Abstract: In some examples, an unmanned aerial vehicle (UAV) employs one or more image sensors to capture images of a scan target and may use distance information from the images for determining respective locations in three-dimensional (3D) space of a plurality of points of a 3D model representative of a surface of the scan target. The UAV may compare a first image with a second image to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. Further, based at least on the difference, the UAV may determine, while the UAV is in flight, an update to the 3D model including at least one of an updated location of at least one point in the 3D model, or a location of a new point in the 3D model.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 7, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230021969
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Application
    Filed: August 18, 2022
    Publication date: January 26, 2023
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20220415185
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 29, 2022
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20220406193
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 22, 2022
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20220390940
    Abstract: In some examples, a computing apparatus may include one or more non-transitory computer-readable storage media and program instructions stored on the one or more computer-readable storage media that, when executed by one or more processors, direct the computing apparatus to perform various steps. For example, the program instructions may continually present a graphical user interface (GUI) at the computing apparatus including a display of a current view of the physical environment from a perspective of an aerial vehicle. The program instructions may detect user interactions with the GUI while the aerial vehicle is in flight. The user interactions may include instructions directing the aerial vehicle to maneuver within the physical environment and configure parameters for scanning a three-dimensional (3D) scan volume. The program instruction may then transmit, to the aerial vehicle, data encoding the instructions for performing a 3D scan of the 3D scan volume.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 8, 2022
    Inventors: Brian Richman, Matthew Thomas Beaudouin-Lafon, Charles VanSchoonhoven Wood, Peter Benjamin Henry, Jack Louis Zhu, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11455894
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 27, 2022
    Assignee: Skydio, Inc.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Patent number: 11455895
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: September 27, 2022
    Assignee: Skydio, Inc.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry