Patents by Inventor Harry A. Seibel

Harry A. Seibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10283681
    Abstract: A phosphor-converted light emitting device includes a light emitting diode (LED) on a substrate, where the LED comprises a stack of epitaxial layers comprising a p-n junction. A wavelength conversion material is in optical communication with the LED. According to one embodiment of the phosphor-converted light emitting device, a selective filter is adjacent to the wavelength conversion material, and the selective filter comprises a plurality of nanoparticles for absorbing light from the LED not down-converted by the wavelength conversion material. According to another embodiment of the phosphor-converted light emitting device, a perpendicular distance between a perimeter of the LED on the substrate and an edge of the substrate is at least about 24 microns. According to another embodiment of the phosphor-converted light emitting device, the LED comprises a mirror layer on one or more sidewalls thereof for reducing light leakage through the sidewalls.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 7, 2019
    Assignee: Cree, Inc.
    Inventors: Brian T. Collins, Matthew Donofrio, Kevin W. Haberern, Bennett Langsdorf, Anoop Mathew, Harry A. Seibel, Iliya Todorov, Bradley E. Williams
  • Patent number: 9589852
    Abstract: Methods are disclosed including applying a layer of binder material onto an LED structure. A luminescent solution including an optical material suspended in a solution is atomized using a flow of pressurized gas, and the atomized luminescent solution is sprayed onto the LED structure including the layer of binder material using the flow of pressurized gas.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 7, 2017
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins
  • Patent number: 9537052
    Abstract: Provided according to embodiments of the invention are method of coating a phosphor that include contacting the phosphor with a sol comprising at least one of silica, alumina, borate and a precursor thereof, to form a coating on the phosphor; and heating the phosphor. Also provided are phosphors that are coated with alumina, silica and/or borate, and light emitting devices that include such phosphors.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: January 3, 2017
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins
  • Patent number: 9437788
    Abstract: A light emitting diode (LED) component comprises an LED having a dominant wavelength in a range of from about 425 nm to less than 460 nm and a phosphor in optical communication with the LED. The phosphor includes a host lattice comprising yttrium aluminum garnet (YAG), and may include an activator comprising Ce and a substitutional dopant comprising Ga incorporated in the host lattice. An emission spectrum of the phosphor has a maximum intensity in a wavelength range of from about 540 nm to about 570 nm, and an excitation spectrum of the phosphor comprises an intensity at 440 nm equivalent to at least about 85% of a maximum intensity of the excitation spectrum.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 6, 2016
    Assignee: Cree, Inc.
    Inventors: David M. Clatterbuck, Harry A. Seibel, Douglas E. Kinkenon
  • Patent number: 9431590
    Abstract: Light emitter devices, such as light emitting diode (LED) devices and related methods are disclosed. A light emitter device includes a ceramic based substrate, at least one LED chip disposed on the substrate, and a filling material. The ceramic substrate can include one or more surface features. The filling material can be disposed over and/or within a portion of the one or more surface features. Surface features can include one or more pedestals, trenches, holes, indentions, depressions, waves, and/or convexly or concavely curved surfaces. Surface features can improve optics of the LED device, for example, improving brightness, reflection, and/or light extraction associated with the device. Related methods are disclosed.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: August 30, 2016
    Assignee: Cree, Inc.
    Inventors: Erin R. F. Welch, Harry A. Seibel, II, Christopher P. Hussell
  • Publication number: 20160115384
    Abstract: A light emitting diode (LED) component comprises an LED comprising a dominant wavelength in a range of from about 425 nm to about 475 nm, and a phosphor composition in optical communication with the LED. The phosphor composition comprises a primary phase and one or more additional phases. An emission spectrum of the phosphor composition has a peak emission wavelength of between about 640 nm and about 670 nm and a FWHM of between about 40 nm and 65 nm. An x-ray diffraction pattern of the phosphor composition comprises a first intensity peak corresponding to the one or more additional phases at a 2-theta value of from about 26.5° to about 26.8°.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Iliya Todorov, Harry A. Seibel, David M. Clatterbuck
  • Patent number: 9318669
    Abstract: Provided according to embodiments of the invention are methods of making a Ca1-x-ySrxEuyAlSiN3 phosphor composition that include selecting a Color Rendering Index (CRI) R9 value, determining an Eu concentration based on predetermined values to obtain the selected CRI R9 value and making the Ca1-x-ySrxEuyAlSiN3 phosphor having the determined Eu concentration. Also provided are methods for determining concentrations of Eu in a Ca1-x-ySrxEuyAlSiN3 phosphor that will achieve a CRI R9 value. Related computer products are also disclosed.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 19, 2016
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian T. Collins
  • Patent number: 9219201
    Abstract: Light emitting devices include a blue LED that emits blue light having a peak wavelength between 430 nanometers and 480 nanometers and a recipient luminophoric medium that includes luminescent materials that down-convert a portion of the blue light emitted by the blue LED to light having a peak wavelength that is between about 500 nanometers and about 545 nanometers. The combination of the blue light emitted by the blue LED and the light emitted by the luminescent materials in the recipient luminophoric medium comprises light that is perceived as blue light having a color point that falls within the region on the 1931 CIE Chromaticity Diagram defined by ccx, ccy chromaticity coordinates of (0.1355, 0.0399), (0.175, 0.0985), (0.1743 0.1581), (0.1096, 0.0868), (0.1355, 0.0399).
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 22, 2015
    Assignee: Cree, Inc.
    Inventors: Iliya Todorov, Harry Seibel
  • Publication number: 20150221815
    Abstract: A solid state light emitting device includes a solid state light emitter and a lumiphoric material that are selected for use with one another to provide light emissions with improved (i.e., reduced) thermal droop A solid state emitter having a short peak emission wavelength (e.g., in a visible range at or below 440 nm) seemingly less than optimal at room temperature for use with a particular lumiphor can trigger more efficient stimulation of lumiphor emissions at high temperatures. Enhanced epitaxial structures also inhibit decrease of radiant flux by LEDs at elevated temperatures.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Inventors: David Clatterbuck, Harry Seibel, Romit Dhar, Robert David Schmidt, Daniel Carleton Driscoll, Michael John Bergmann
  • Publication number: 20150069430
    Abstract: A phosphor-converted light emitting device includes a light emitting diode (LED) on a substrate, where the LED comprises a stack of epitaxial layers comprising a p-n junction. A wavelength conversion material is in optical communication with the LED. According to one embodiment of the phosphor-converted light emitting device, a selective filter is adjacent to the wavelength conversion material, and the selective filter comprises a plurality of nanoparticles for absorbing light from the LED not down-converted by the wavelength conversion material. According to another embodiment of the phosphor-converted light emitting device, a perpendicular distance between a perimeter of the LED on the substrate and an edge of the substrate is at least about 24 microns. According to another embodiment of the phosphor-converted light emitting device, the LED comprises a mirror layer on one or more sidewalls thereof for reducing light leakage through the sidewalls.
    Type: Application
    Filed: May 14, 2014
    Publication date: March 12, 2015
    Inventors: Brian T. Collins, Matthew Donofrio, Kevin W. Haberern, Bennett Langsdorf, Anoop Mathew, Harry A. Seibel, Iliya Todorov, Bradley E. Williams
  • Publication number: 20150024516
    Abstract: Methods are disclosed including applying a layer of binder material onto an LED structure. A luminescent solution including an optical material suspended in a solution is atomized using a flow of pressurized gas, and the atomized luminescent solution is sprayed onto the LED structure including the layer of binder material using the flow of pressurized gas.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins
  • Patent number: 8906263
    Abstract: Provided according to embodiments of the invention are phosphor compositions that include Ca1-x-ySrxEuyAlSiN3, wherein x is in a range of 0.50 to 0.99 and y is less than 0.013. Also provided according to embodiments of the invention are phosphor compositions that include Ca1-x-ySrxEuyAlSiN3, wherein x is in a range of 0.70 to 0.99 and y is in a range of 0.001 and 0.025. Also provided are methods of making phosphors and light emitting devices that include a phosphor composition according to an embodiment of the invention.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: December 9, 2014
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins, David Todd Emerson
  • Publication number: 20140339593
    Abstract: A light emitting diode (LED) component comprises an LED having a dominant wavelength in a range of from about 425 nm to less than 460 nm and a phosphor in optical communication with the LED. The phosphor includes a host lattice comprising yttrium aluminum garnet (YAG), and may include an activator comprising Ce and a substitutional dopant comprising Ga incorporated in the host lattice. An emission spectrum of the phosphor has a maximum intensity in a wavelength range of from about 540 nm to about 570 nm, and an excitation spectrum of the phosphor comprises an intensity at 440 nm equivalent to at least about 85% of a maximum intensity of the excitation spectrum.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 20, 2014
    Inventors: David M. Clatterbuck, Harry A. Seibel, Douglas E. Kinkenon
  • Publication number: 20140264397
    Abstract: Light emitter devices, such as light emitting diode (LED) devices and related methods are disclosed. A light emitter device includes a ceramic based substrate, at least one LED chip disposed on the substrate, and a filling material. The ceramic substrate can include one or more surface features. The filling material can be disposed over and/or within a portion of the one or more surface features. Surface features can include one or more pedestals, trenches, holes, indentions, depressions, waves, and/or convexly or concavely curved surfaces. Surface features can improve optics of the LED device, for example, improving brightness, reflection, and/or light extraction associated with the device. Related methods are disclosed.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventors: Erin R. F. Welch, Harry A. Seibel, II, Christopher P. Hussell
  • Patent number: 8814621
    Abstract: Provided according to embodiments of the invention are methods of making a Ca1-x-ySrxEuyAlSiN3 phosphor composition that include selecting a relative color point; determining Eu and Sr concentrations based on predetermined values to obtain the selected relative color point; and making the Ca1-x-ySrxEuyAlSiN3 phosphor having the determined Eu and Sr concentrations. Also provided are methods for determining concentrations of Sr and Eu in a Ca1-x-ySrxEuyAlSiN3 phosphor that will achieve a relative color point. Related computer products are also disclosed.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 26, 2014
    Assignee: Cree, Inc.
    Inventor: Harry A. Seibel, II
  • Publication number: 20140217326
    Abstract: Provided according to embodiments of the invention are method of coating a phosphor that include contacting the phosphor with a sol comprising at least one of silica, alumina, borate and a precursor thereof, to form a coating on the phosphor; and heating the phosphor. Also provided are phosphors that are coated with alumina, silica and/or borate, and light emitting devices that include such phosphors.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins
  • Patent number: 8772798
    Abstract: An LED device comprises an LED chip or LED chip array for emitting light of a color spectrum, the LED chip or array being mounted on a component having a component surface. At least one color is applied to the component surface where the color is selected to reflect light to color tune the light emitted from the LED device to obtain a desired CRI.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: July 8, 2014
    Assignee: Cree, Inc.
    Inventor: Harry Seibel
  • Patent number: 8729790
    Abstract: Provided according to embodiments of the invention are method of coating a phosphor that include contacting the phosphor with a sol comprising at least one of silica, alumina, borate and a precursor thereof, to form a coating on the phosphor; and heating the phosphor. Also provided are phosphors that are coated with alumina, silica and/or borate, and light emitting devices that include such phosphors.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 20, 2014
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Thomas Collins
  • Publication number: 20140061689
    Abstract: An LED device comprises an LED chip or LED chip array for emitting light of a color spectrum, the LED chip or array being mounted on a component having a component surface. At least one color is applied to the component surface where the color is selected to reflect light to color tune the light emitted from the LED device to obtain a desired CRI.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: CREE, INC.
    Inventor: Harry Seibel
  • Patent number: 8589120
    Abstract: A method of determining lighting contributions of elements of a lighting component includes obtaining optical data representative of light output of the lighting component. Relative intensity data may be calculated from the optical data, and may indicate intensity differences in the light output of the lighting component as compared to that of a reference component. An optical property of an element of the lighting component is determined based on a comparison of the optical data with that of the reference component, where the reference component includes at least one reference element. Related systems and apparatus are also discussed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 19, 2013
    Assignee: Cree, Inc.
    Inventors: Harry A. Seibel, II, Brian Collins, David Emerson