Patents by Inventor Harry Figi

Harry Figi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11674833
    Abstract: A thermal sensor comprises an active element (41), e.g., a heater or cooler, at least one temperature sensor (31), and processing circuitry (50). The processing circuitry causes a change of power supplied to the active element (41). It then determines, at a plurality of times, a thermal parameter based on an output signal of the temperature sensors and analyzes the transient behavior of the thermal parameter. Based on this analysis, the processing circuitry determines a contamination signal that is indicative of a contamination on a sensing surface of the thermal sensor. If the thermal sensor comprises a plurality of temperature sensors arranged in different sectors of the sensing surface, a multi-sector thermal signal can be derived from the outputs of the sensors, and determination of the contamination signal can be based on the multi-sector thermal signal.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: June 13, 2023
    Assignee: Sensirion AG
    Inventors: Mark Hornung, Andreas Rüegg, Harry Figi, Lucas Huber
  • Publication number: 20200200580
    Abstract: A thermal sensor comprises an active element (41), e.g., a heater or cooler, at least one temperature sensor (31), and processing circuitry (50). The processing circuitry causes a change of power supplied to the active element (41). It then determines, at a plurality of times, a thermal parameter based on an output signal of the temperature sensors and analyzes the transient behavior of the thermal parameter. Based on this analysis, the processing circuitry determines a contamination signal that is indicative of a contamination on a sensing surface of the thermal sensor. If the thermal sensor comprises a plurality of temperature sensors arranged in different sectors of the sensing surface, a multi-sector thermal signal can be derived from the outputs of the sensors, and determination of the contamination signal can be based on the multi-sector thermal signal.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 25, 2020
    Applicant: Sensirion AG
    Inventors: Mark Hornung, Andreas Rüegg, Harry FIGI, Lucas HUBER
  • Patent number: 10094691
    Abstract: A flow sensor arrangement for determining the flow of a fluid comprises a substrate. A heater is arranged in or on the substrate as well as at least one first thermocouple for generating a first signal proportional to a temperature difference between a location downstream from the heater and a first reference location, and at least one second thermocouple for generating a second signal proportional to a temperature difference between a location upstream from the heater and a second reference location which second reference location is different from the first reference location. In addition, at least one third thermocouple is arranged in or on the substrate for generating a third signal proportional to a temperature difference between the first reference location and the second reference location.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: October 9, 2018
    Assignee: Sensirion AG
    Inventors: Harry Figi, Mark Hornung, Robert Wuest
  • Publication number: 20160216144
    Abstract: A flow sensor arrangement for determining the flow of a fluid comprises a substrate. A heater is arranged in or on the substrate as well as at least one first thermocouple for generating a first signal proportional to a temperature difference between a location downstream from the heater and a first reference location, and at least one second thermocouple for generating a second signal proportional to a temperature difference between a location upstream from the heater and a second reference location which second reference location is different from the first reference location. In addition, at least one third thermocouple is arranged in or on the substrate for generating a third signal proportional to a temperature difference between the first reference location and the second reference location.
    Type: Application
    Filed: December 21, 2015
    Publication date: July 28, 2016
    Inventors: Harry FIGI, Mark HORNUNG, Robert WUEST
  • Patent number: 8846969
    Abstract: The invention concerns Phenolic Configurationally Locked Polyene Single Crystals, which are especially suited as highly efficient nonlinear optical organic material. The invention also concerns methods for growth of crystalline thin films or bulk crystals from melt and/or solution. The compounds are suited and the methods may be used for manufacturing optical elements for several bulk and integrated applications, e.g. electro-Optics and THz-Wave applications.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 30, 2014
    Assignee: Rainbow Photonics AG
    Inventors: Peter Gunter, Mojca Jazbinsek, O-Pil Kwon, Seong-Ji Kwon, Christoph Hunziker, Harry Figi
  • Publication number: 20110128610
    Abstract: The invention concerns Phenolic Configurationally Locked Polyene Single Crystals, which are especially suited as highly efficient nonlinear optical organic material. The invention also concerns methods for growth of crystalline thin films or bulk crystals from melt and/or solution. The compounds are suited and the methods may be used for manufacturing optical elements for several bulk and integrated applications, e.g. electro-Optics and THz-Wave applications.
    Type: Application
    Filed: May 5, 2009
    Publication date: June 2, 2011
    Inventors: Peter Gunter, Mojca Jazbinsek, O-Pil Kwon, Seong-Ji Kwon, Christoph Hunziker, Harry Figi