Patents by Inventor Harry Kirk

Harry Kirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183684
    Abstract: A system includes an energy management system disposed onboard a vehicle system configured to travel on a route during a trip. The energy management system is configured to receive trip information from a second vehicle system that includes one or more constraints including at least one of speed, distance, or time restrictions for the vehicle system along the route. The energy management system is further configured to generate a trip plan for controlling movement of the vehicle system along the route during the trip. The trip plan is generated based on the one or more constraints. The trip plan has a plan speed profile that designates speeds for the vehicle system according to at least one of distance or time during the trip. The energy management system is further configured to control movement of the vehicle system during the trip according to the plan speed profile of the trip plan.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Harry Kirk Mathews, Jr., Brian Nedward Meyer, James D. Brooks, Joseph Daniel Wakeman, Dan Dai, Anup Menon
  • Publication number: 20190001655
    Abstract: A manufacturing computer device for dynamically adapting additive manufacturing of a part is configured to store a model of the part including a plurality of build parameters. The manufacturing computer device is also configured to receive current sensor information of at least one current sensor reading of a melt pool from a build of the part in progress. The computer device is further configured to determine one or more attributes of the melt pool based on the current sensor information. Moreover, the computer device is configured to calculate at least one unseen attribute of the melt pool. In addition, the computer device is configured to determine an adjusted build parameter based on the at least one unseen attribute, the one or more attributes, and the plurality of build parameters. The computer device is also configured to transmit the adjusted build parameter to a machine currently manufacturing the part.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Rogier Sebastiaan Blom, John Freer, Dean Michael Robinson, Subhrajit Roychowdhury, Harry Kirk Mathews, JR.
  • Publication number: 20190001658
    Abstract: A computer-enabled device for dynamically creating or modifying at least a portion of an additive manufacturing build for making a part is provided. The device is in direct or indirect communication with one or more additive manufacturing machines that use one or more build parameters. The device is configured to analyze a plurality of build information pertaining to the part. The device is also configured to assess whether one or more differences between the pre-existing data and the non-pre-existing data will result in a deviation from, or improvement to, the part, the additive manufacturing build, or both and automatically create or modify, one or more of the build parameters of the part, at least a portion of the additive manufacturing build, or a combination thereof, based on the assessment of the one more differences.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Harry Kirk Mathews, JR., Michael Evans Graham, Pinghai Yang, Tyler Nelson
  • Publication number: 20190004496
    Abstract: A manufacturing computer device for dynamically adapting additive manufacturing of a part is configured to store a build file for building the part including one or more build parameters and receive build information. The manufacturing computer device is also configured to compare the sensor information to the one or more build parameters to determine one or more differences. The computer device is further configured to determine one or more adjustments to the one or more build parameters. Moreover, the computer device is configured to generate an updated build file based on the one or more adjustments. In addition, the computer device is further configured to transmit the updated build file to at least one machine of the plurality of machines for manufacture.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Rogier Sebastiaan Blom, John Freer, Dean Michael Robinson, Subhrajit Roychowdhury, Harry Kirk Mathews, JR.
  • Publication number: 20190004079
    Abstract: A manufacturing computer device for dynamically adapting additive manufacturing of a part is provided. The manufacturing computer device includes at least one processor in communication with at least one memory device. The at least one memory device stores a build file for building the part including a plurality of geometries that each include one or more values of a first build parameter. The processor is programmed to receive sensor information of a build of the part by a machine, compare the sensor information for each geometry of the plurality of geometries to the corresponding one or more values of the first build parameter, determine one or more values for a second build parameter for each of the geometries based on the one or more differences, and generate an updated build file for the part including the one or more values for the second build parameter.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Rogier Sebastiaan Blom, John Freer, Dean Michael Robinson, Subhrajit Roychowdhury, Harry Kirk Mathews, JR.
  • Publication number: 20180366005
    Abstract: A convoy management system and method determine determining an inter-vehicle spacing in a convoy formed from two or more vehicles traveling together along one or more routes. Controllers onboard the two or more vehicles are instructed to automatically change movement of at least one of the vehicles in the convoy to maintain the inter-vehicle spacing. The inter-interview spacing is dynamically changed during movement of the convoy along the one or more routes.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 20, 2018
    Inventors: Gayathri Seenumani, Hulla Sehgal, James D. Brooks, Harry Kirk Mathews, JR., Olugbenga Anubi
  • Publication number: 20180345382
    Abstract: A powder melting device for an additive manufacturing system including a laser device configured to emit an energy beam and a beam modulator. The beam modulator is configured to selectively induce an angular deflection in the energy beam for a predetermined time period such that the energy beam generates a plurality of melt pools in a powder bed.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventors: Subhrajit Roychowdhury, James William Sears, Harry Kirk Mathews, JR.
  • Patent number: 10137912
    Abstract: System having one or more processors that are configured to (a) generate, as a vehicle system moves along a route, a plurality of different trial plans for an upcoming segment of the route. The trial plans include potential operational settings of the vehicle system along the route. The one or more processors that are configured to (b) select one of the trial plans as a selected plan or generate the selected plan based on one or more of the trial plans. The selected plan is configured to improve one or more system-handling metrics as the vehicle system moves along the upcoming segment of the route. The one or more processors are configured to (c) communicate instructions to change or not change at least one of the operational settings of the vehicle system based on the selected plan.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Gabriel de Albuquerque Gleizer, Carlos Gonzaga, Lucas Vargas, Anup Menon, Dan Dai, Harry Kirk Matthews, Jr.
  • Publication number: 20180322791
    Abstract: A control system and method identify a first vehicle system that is traveling from a first location toward a different, second location, and a second vehicle system for combining with the first vehicle system into a convoy of vehicle systems. The system and method also direct the first and second vehicle systems to couple with each other for travel as the convoy. The system and method direct one or more of the second vehicle system of the convoy to separate from the convoy and/or a third vehicle system that is outside of the convoy to join the convoy by coupling with one or more of the first vehicle system or the second vehicle system in the convoy in at least one intermediate location between the first location and the second location.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 8, 2018
    Inventors: James D. Brooks, Harry Kirk Mathews, JR.
  • Publication number: 20180273064
    Abstract: A system and method identifies vehicles to be included in a multi-vehicle system that is to travel along one or more routes for an upcoming trip, and determines plural different potential builds of the multi-vehicle system. The different potential builds represent different sequential orders of the vehicles in the multi-vehicle system. The system and method also simulate travels of the different potential builds for the upcoming trip, calculate a safety metric, consumption metric, and/or build metric for the different potential builds based on travels that are simulated, and generates a quantified evaluation of the safety metric, consumption metric, and/or build metric for the different potential builds for use in selecting a chosen potential build of the different potential builds. The chosen potential build is used to build the multi-vehicle system for the upcoming trip.
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Inventors: James D. Brooks, Harry Kirk Mathews, JR., William Schoonmaker
  • Patent number: 10053120
    Abstract: A control system identifies vehicle systems for combining into a larger convoy. Each the vehicle systems is formed from at least one propulsion-generating vehicle and at least one non-propulsion-generating vehicle. The control system directs the identified vehicle systems to couple with each other for travel as the convoy from a first location toward a different, second location. The control system directs a first vehicle system in the convoy to separate from the convoy and/or a second vehicle system to join the convoy by coupling with at least one of the vehicle systems in the convoy in an intermediate location between the first and second locations. The vehicles in each of the vehicle systems in the convoy remain connected during separation of the first vehicle system from the convoy and/or during joining of the second vehicle system to the convoy.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: James D. Brooks, Harry Kirk Mathews
  • Publication number: 20180200963
    Abstract: An additive manufacturing system is configured to manufacture a component. The additive manufacturing system includes a laser device, a build platform, a first scanning device, and an air knife. The laser device is configured to generate a laser beam. The component is disposed on the build platform. The air knife is configured to channel an inert gas across the build platform. The first scanning device is configured to selectively direct the laser beam across the build platform. The laser beam is configured to generate successive layers of a melted powdered build material on the component and the build platform. The build platform is configured to rotate the component relative to the air knife.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 19, 2018
    Inventors: David Charles Bogdan, JR., Jason Harris Karp, Justin John Gambone, JR., Lang Yuan, Jinjie Shi, Victor Petrovich Ostroverkhov, Marshall Gordon Jones, William Thomas Carter, Harry Kirk Mathews, JR., Kevin George Harding
  • Publication number: 20180193956
    Abstract: An additive manufacturing system includes a laser device, a build plate, a first scanning device, and an alignment system. The laser device is configured to generate a laser beam. The build plate has a position relative to the laser device. The first scanning device is configured to selectively direct the laser beam across the build plate. The laser beam generates a melt pool on the build plate. The alignment system includes a fiducial marks projector configured to project a plurality of fiducial marks across the build plate. Each fiducial mark has a location on the build plate. The alignment system also includes an optical detector configured to detect the location of each of the fiducial marks on the build plate. The alignment system is configured to detect the position of the build plate relative to the laser device.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 12, 2018
    Inventors: Victor Petrovich Ostroverkhov, Harry Kirk Mathews, JR., Justin John Gambone, JR., Jason Harris Karp, Kevin George Harding, Scott Michael Miller, William Thomas Carter
  • Publication number: 20180193955
    Abstract: A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Jason Harris Karp, Justin John Gambone, JR., Michael Evans Graham, David Charles Bogdan, JR., Victor Petrovich Ostroverkhov, William Thomas Carter, Harry Kirk Mathews, JR., Kevin George Harding, Jinjie Shi, Marshall Gordon Jones, James William Sears
  • Publication number: 20180185959
    Abstract: An additive manufacturing system includes an excitation energy source for generating a melt pool in a build material based on a build parameter. The system includes a sensing energy source and a first scanning device that directs the sensing energy source across the build material. The build material emits an ambient quantity of electromagnetic radiation prior to being contacted by an energy beam from the sensing energy source, and a sensing quantity of electromagnetic radiation different than the ambient quantity after contact by the energy beam. The system includes an optical system having an optical detector for detecting the sensing quantity of electromagnetic radiation and generating a detection signal in response. A computing device receives the detection signal and generates a control signal in response. The control signal is configured to modify the build parameter based on the sensing quantity of electromagnetic radiation to achieve a desired melt pool characteristic.
    Type: Application
    Filed: January 3, 2017
    Publication date: July 5, 2018
    Inventors: Harry Kirk Mathews, JR., Michael Evans Graham
  • Publication number: 20180185963
    Abstract: An additive manufacturing system includes build plate with a powdered metal material disposed thereon. The additive manufacturing system also includes at least one wall defining an air-locked build chamber, a conveyor system, and a plurality of operation stations. The conveyor system is disposed within the air-locked build chamber. The conveyor system is configured to transport the build plate. The plurality of operation stations are positioned adjacent to the conveyor system and within the air-locked build chamber. Each operation station of the plurality of operation stations is configured to facilitate execution of at least one additive manufacturing operation on the powdered metal material disposed on the build plate. The conveyor system is configured to transfer the build plate from a first operation station of the plurality of operation stations to a second operation station of the plurality of operation stations.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 5, 2018
    Inventors: Victor Petrovich Ostroverkhov, Harry Kirk Mathews, JR., Justin John Gambone, JR.
  • Patent number: 10005561
    Abstract: Systems and methods for stabilizing an aircraft in response to a yaw movement are provided. In one embodiment, a method includes detecting a yaw movement of the aircraft. The yaw movement can cause a front portion of the aircraft to move towards a first side of the aircraft. The method can further include, in response to the yaw movement, initiating a trim process resulting in a thrust differential. The trim process can include increasing thrust in one or more engines on the first side of the aircraft and decreasing thrust in one or more engines on a second side of the aircraft. The method can include controlling the trim process based at least in part on a detected yaw movement of the aircraft.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: June 26, 2018
    Assignee: GE Aviation Systems LLC
    Inventors: Steven Louis Kiebles, David Michael Lax, Otto Y Darias, Mark Lawrence Darnell, Sean Sanghyun Hwang, Christopher Daniel Holbert, Harry Kirk Mathews, Jr., Sridhar Adibhatla, Jeffrey Russell Bult, Thomas Charles Swager
  • Publication number: 20180148077
    Abstract: A system (e.g., a control system) includes a sensor configured to monitor an operating condition of a vehicle system during movement of the vehicle system along a route. The system also includes a controller configured to designate one or more operational settings for the vehicle system as a function of time and/or distance along the route.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 31, 2018
    Inventors: Brian Nedward MEYER, Harry Kirk MATHEWS, JR., James D. BROOKS, Kristopher Ryan SMITH
  • Publication number: 20180118237
    Abstract: System having one or more processors that are configured to (a) generate, as a vehicle system moves along a route, a plurality of different trial plans for an upcoming segment of the route. The trial plans include potential operational settings of the vehicle system along the route. The one or more processors that are configured to (b) select one of the trial plans as a selected plan or generate the selected plan based on one or more of the trial plans. The selected plan is configured to improve one or more system-handling metrics as the vehicle system moves along the upcoming segment of the route. The one or more processors are configured to (c) communicate instructions to change or not change at least one of the operational settings of the vehicle system based on the selected plan.
    Type: Application
    Filed: February 22, 2017
    Publication date: May 3, 2018
    Inventors: Gabriel de Albuquerque Gleizer, Carlos Gonzaga, Lucas Vargas, Anup Menon, Dan Dai, Harry Kirk Matthews, Jr.
  • Publication number: 20180118238
    Abstract: System includes a control system used to control operation of a vehicle system as the vehicle system moves along a route. The vehicle system includes a plurality of system vehicles in which adjacent system vehicles are operatively coupled such that the adjacent system vehicles are permitted to move relative to one another. The control system includes one or more processors that are configured to (a) receive operational settings of the vehicle system and (b) input the operational settings into a system model of the vehicle system to determine an observed metric of the vehicle system. The one or more processors are also configured to (c) compare the observed metric to a reference metric and (d) modify the operational settings of the vehicle system based on differences between the observed and the reference metrics.
    Type: Application
    Filed: February 22, 2017
    Publication date: May 3, 2018
    Inventors: Gabriel de Albuquerque Gleizer, Carlos Gonzaga, Lucas Vargas, Harry Kirk Matthews, JR.