Patents by Inventor Harry W. Deckman

Harry W. Deckman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190145932
    Abstract: For method of utilizing a nondestructive evaluation method to inspect a steel material comprising at least one hysteretic ferromagnetic material and/or at least one nonhysteretic material to identify one or more material conditions and/or one or more inhomogeneities in steel material, the method can comprise the steps of: interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field; scanning the steel material and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material; determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response; and correlating the time dependent nonlinear characteristic of the received magnetic response and/or acoustic response to the one or more material conditions and/or one or more inhomogeneities in steel material.
    Type: Application
    Filed: October 19, 2018
    Publication date: May 16, 2019
    Inventors: Lang Feng, Qiuzi Li, Harry W. Deckman, Paul M. Chaikin, Neeraj S. Thirumalai, Shiun Ling, Joseph W. Krynicki, Jamey A. Fenske
  • Publication number: 20190145933
    Abstract: Provided is a method of utilizing a nondestructive evaluation method to inspect/screen steel components (like plates), steel metal pipes, and seam welds and girth welds of the pipes to identify material phases and assess material qualities. The method includes: providing a DC magnetic field from a magnet to a steel plate, pipe, or weld composed of at least one hysteretic ferromagnetic material followed by scanning the plate, pipe, or weld and recording magnetic responses from two or more suitable sensors disposed at locations with different magnetic field strengths in the regions of interest configured to receive magnetic responses; and correlating all the said received magnetic responses to one or more material qualities and/or material phases of the plate, pipe, or weld. The one or more material qualities includes regions of higher hardness, regions of metal loss, regions of surface cracks, amount of undesirable phases, and combinations thereof.
    Type: Application
    Filed: October 19, 2018
    Publication date: May 16, 2019
    Inventors: Lang Feng, Qiuzi Li, Harry W. Deckman, Paul M. Chaikin, Neeraj S. Thirumalai, Shiun Ling, Joseph W. Krynicki, Jamey A. Fenske
  • Patent number: 10259711
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Patent number: 10101495
    Abstract: Systems and methods are provided for a magneto-seismic exploration of a subsurface region. An electromagnetic source may transmit time-varying electromagnetic field into the subsurface region, in the presence of a static or time-varying magnetic field, such that a component of the electric field associated with the time-varying electromagnetic field is substantially parallel to an interface between two subsurface formations in the subsurface region, wherein the electric field interacts with the static or time-varying magnetic field and creates a Lorentz force in each of the subsurface formations. One or more seismic receivers may detect a seismic signal generated by a Lorentz force change at the interface between the two subsurface formations. A computer system may be programmed to process and present the detected seismic signal.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 16, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Qiuzi Li, Harry W. Deckman, Mehmet Deniz Ertas
  • Patent number: 10080991
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to remove contaminants, such as water, from the stream. As part of the process, the adsorbent bed unit is purged with a purge stream that is provided at a temperature less than 450° F. The de-contaminated stream may be used with a liquefied natural gas (LNG) plant or other subsequent process requiring a de-contaminated stream. The swing adsorption process may involve a combined TSA and PSA process, which is utilized to remove contaminants from the feed stream.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: September 25, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert A. Johnson, Harry W. Deckman, Bruce T. Kelley, Russell H. Oelfke, Shwetha Ramkumar
  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Publication number: 20180149020
    Abstract: Methods of determining a spatial distribution of an injected tracer material within a subterranean formation are disclosed, including flowing the tracer material, which includes a tracer electrical capacitance that differs from a formation electrical capacitance of a region of the subterranean formation, into the region of the subterranean formation via a wellbore. Subsequent to the flowing, the methods also include providing an input electromagnetic signal to the region of the subterranean formation. Responsive to the providing, the methods further include receiving an output electromagnetic signal from the subterranean formation. The methods further include determining the spatial distribution of the tracer material within the subterranean formation based, at least in part, on the output electromagnetic signal.
    Type: Application
    Filed: August 1, 2017
    Publication date: May 31, 2018
    Inventors: Brent Wheelock, Mehmet Deniz Ertas, Lang Feng, Qiuzi Li, Harry W. Deckman
  • Publication number: 20180056235
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Application
    Filed: August 4, 2017
    Publication date: March 1, 2018
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Patent number: 9874396
    Abstract: The present disclosure provides a method for separating a feed stream in a distillation tower which includes separating a feed stream in a stripper section into an enriched contaminant bottom liquid stream and a freezing zone vapor stream; contacting the freezing zone vapor stream in the controlled freeze zone section with a freezing zone liquid stream at a temperature and pressure at which a solid and a hydrocarbon-enriched vapor stream form; directly applying heat to a controlled freeze zone wall of the controlled freeze zone section with a heating mechanism coupled to at least one of a controlled freeze zone internal surface of the controlled freeze zone wall and a controlled freeze zone external surface of the controlled freeze zone wall; and at least one of destabilizing and preventing adhesion of the solid to the controlled freeze zone wall with the heating mechanism.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 23, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jaime A. Valencia, Harry W. Deckman, Charles J. Mart, James T. Wilkins, Paul Scott Northrop
  • Publication number: 20170305744
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Application
    Filed: March 22, 2017
    Publication date: October 26, 2017
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Publication number: 20170261642
    Abstract: Systems and methods are provided for a magneto-seismic exploration of a subsurface region. An electromagnetic source may transmit time-varying electromagnetic field into the subsurface region, in the presence of a static or time-varying magnetic field, such that a component of the electric field associated with the time-varying electromagnetic field is substantially parallel to an interface between two subsurface formations in the subsurface region, wherein the electric field interacts with the static or time-varying magnetic field and creates a Lorentz force in each of the subsurface formations. One or more seismic receivers may detect a seismic signal generated by a Lorentz force change at the interface between the two subsurface formations. A computer system may be programmed to process and present the detected seismic signal.
    Type: Application
    Filed: February 28, 2017
    Publication date: September 14, 2017
    Inventors: Qiuzi LI, Harry W. Deckman, Mehmet Deniz Ertas
  • Patent number: 9737846
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. Leta, Preeti Kamakoti, Peter Ravikovitch, Joshua Varon, Tilman Wolfram Beutel, Karl Gottlieb Strohmaier, Ivy Dawn Johnson, Harry W. Deckman, Frank Cheng-Yu Wang, Charanjit Singh Paur
  • Publication number: 20170144106
    Abstract: Asymmetric membrane structures are provided that are suitable for various types of separations, such as separations by reverse osmosis. Methods for making an asymmetric membrane structure are also provided. The membrane structure can include at least one polymer layer. Pyrolysis can be used to convert the polymer layer to a porous carbon structure with a higher ratio of carbon to hydrogen.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 25, 2017
    Applicants: ExxonMobil Research and Engineering Company, Georgia Tech Research Corporation
    Inventors: Benjamin A. McCOOL, Harry W. DECKMAN, Ryan P. LIVELY, Dong-Yeun KOH, Randall D. Partridge
  • Publication number: 20170136420
    Abstract: Asymmetric membrane structures are provided that are suitable for various types of separations, such as separations by reverse osmosis. Methods for making an asymmetric membrane structure are also provided. The membrane structure can include at least one polymer layer. Pyrolysis can be used to convert the polymer layer to a porous carbon structure with a higher ratio of carbon to hydrogen.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 18, 2017
    Applicants: ExxonMobil Research and Engineering Company, Georgia Tech Research Corporation
    Inventors: Benjamin A. McCOOL, Harry W. DECKMAN, Ryan P. LIVELY, Dong-Yeun KOH
  • Publication number: 20170056814
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to treat the pipeline quality natural gas to form a stream that complies with liquefied natural gas (LNG) specifications. The process may involve a combined TSA and PSA process, which is utilized to remove contaminants from the feed stream.
    Type: Application
    Filed: August 10, 2016
    Publication date: March 2, 2017
    Inventors: Bennett D. Marshall, Bruce T. Kelley, Ananda K. Nagavarapu, Harry W. Deckman, Robert A. Johnson, Shwetha Ramkumar, Russell H. Oelfke
  • Publication number: 20170056810
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve passing streams through adsorbent bed units to remove contaminants, such as water, from the stream. As part of the process, the adsorbent bed unit is purged with a purge stream that is provided at a temperature less than 450° F. The de-contaminated stream may be used with a liquefied natural gas (LNG) plant or other subsequent process requiring a de-contaminated stream. The swing adsorption process may involve a combined TSA and PSA process, which is utilized to remove contaminants from the feed stream.
    Type: Application
    Filed: August 10, 2016
    Publication date: March 2, 2017
    Inventors: Robert A. JOHNSON, Harry W. Deckman, Bruce T. Kelley, Russell H. Oelfke, Shwetha Ramkumar
  • Patent number: 9573116
    Abstract: Methods are provided for synthesizing ZSM-58 crystals with an improved morphology and/or an improved size distribution. By controlling the conditions during synthesis of the ZSM-58 crystals, crystals of a useful size with a narrow size distribution can be generated. Steaming the H-form DDR framework type crystals at a temperature from 426±° C. to 1100±° C. for a time period from about 30 minutes to about 48 hours can attain one or more of the following properties: a CH4 diffusivity of no more than 95% of the CH4 diffusivity of the unsteamed H-form DDR framework type crystals; an N2 BET surface area from 85% to 110% of the surface area of unsteamed H-form DDR framework type crystals; and an equilibrium CO2 sorption capacity from 80% to 105% of the equilibrium CO2 sorption capacity of unsteamed H-form DDR framework type crystals.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ivy D. Johnson, Tilman W. Beutel, Peter I. Ravikovitch, Harry W. Deckman, Jack W. Johnson, Jean W. Beeckman, Natalie A. Fassbender, Nadya A Hrycenko, Randolph J. Smiley
  • Publication number: 20160175759
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 23, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. LETA, Preeti KAMAKOTI, Peter RAVIKOVITCH, Joshua VARON, Tilman Wolfram BEUTEL, Karl Gottlieb STROHMAIER, Ivy Dawn JOHNSON, Harry W. DECKMAN, Frank Cheng-Yu WANG, Charanjit Singh PAUR
  • Patent number: 9353940
    Abstract: Systems and methods for an oxy-fuel type combustion reaction are provided. In one or more embodiments, a combustion system can include at least two mixing zones, where a first mixing zone at least partially mixes oxygen and carbon dioxide to produce a first mixture and a second mixing zone at least partially mixes the first mixture with a fuel to produce a second mixture. The combustion system can also include a combustion zone configured to combust the second mixture to produce a combustion product. In one or more embodiments, the first mixture can have a spatially varied ratio of oxygen-to-carbon dioxide configured to generate a hot zone in the combustion zone to increase flame stability in the combustion zone.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 31, 2016
    Assignees: ExxonMobil Upstream Research Company, Georgia Tech Research Corporation
    Inventors: Franklin F. Mittricker, Dennis M. O'Dea, Harry W. Deckman, Chad C. Rasmussen, David R. Noble, Jerry M. Seitzman, Timothy C. Lieuwen, Sulabh K. Dhanuka, Richard Huntington
  • Publication number: 20150328578
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 19, 2015
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, JR.