Patents by Inventor Harry W. Perlow
Harry W. Perlow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240265226Abstract: A method of controlling assignment and management of identities in ambient electromagnetic power harvesting (AEPH) chips. The method comprises allocating a plurality of unique AEPH identities by an AEPH management application executing on a computer system, receiving a plurality of requests by the AEPH management application to update a state associated in a blockchain with the unique AEPH identity identified in each request; determining by the AEPH management application that the blockchain is to be terminated; adding by the AEPH management application a terminal block to the blockchain; receiving a request by the AEPH management application to update a state associated with a unique AEPH identity in the blockchain; and sending a request rejection by the AEPH management application to the affiliated device that sent the request to update the state associated with the unique AEPH identity in the blockchain after the terminal block was added to the blockchain.Type: ApplicationFiled: February 7, 2023Publication date: August 8, 2024Inventors: Mark R. Bales, Lyle T. Bertz, Lyle W. Paczkowski, Harry W. Perlow
-
System and Method of Controlling Unique Identities of Ambient Electromagnetic Power Harvesting Chips
Publication number: 20240020502Abstract: A system for controlling assignment and management of identities in ambient electromagnetic power harvesting (AEPH) chips. The system comprises a processor; a non-transitory memory; and an application stored in the non-transitory memory that, when executed by the processor, allocates a plurality of unique AEPH identities, wherein each unique identity comprises an identity of a product item and an instance identity; stores the plurality of unique AEPH identities in a first immutable record in a datastore, wherein the unique AEPH identities are associated with an initial state; provides the plurality of unique AEPH identities to an original equipment manufacturer of AEPH chips; provides an application programming interface (API); authorizes a request to update a state associated with a first unique AEPH identity in the datastore; and adds a second immutable record to the database that associates the first unique AEPH identity with an updated state of the first unique AEPH identity.Type: ApplicationFiled: June 9, 2023Publication date: January 18, 2024Inventors: Mark R. Bales, Lyle T. Bertz, Lyle W. Paczkowski, Harry W. Perlow -
Publication number: 20230379043Abstract: An aerial vehicle wirelessly transmits data that indicates an antenna aperture beamwidth for an airborne wireless transmitter. The aerial vehicle wirelessly receives an uplink beamforming instruction and an uplink power instruction. The aerial vehicle beamforms an uplink wireless signal responsive to the uplink beamforming instruction. The aerial vehicle amplifies the beamformed uplink wireless signal responsive to the uplink power instruction. The aerial vehicle wirelessly transmits the beamformed and amplified uplink wireless signal from the airborne wireless transmitter.Type: ApplicationFiled: August 3, 2023Publication date: November 23, 2023Inventors: Harry W. Perlow, Walter F. Rausch
-
Patent number: 11757524Abstract: A terrestrial transceiver beamforms an uplink signal from an airborne transceiver. In the terrestrial transceiver, a radio wirelessly receives an airborne transceiver Identifier (ID) and reference signals from the airborne transceiver. A Baseband Unit (BBU) determines a beamforming instruction based on the airborne transceiver ID and the reference signals. The radio wirelessly transfers the beamforming instruction to the airborne transceiver. The airborne transceiver beamforms the uplink signal based on the beamforming instruction. The radio wirelessly receives the beamformed uplink signal from the airborne transceiver. The BBU receives the beamformed uplink signal from the radio.Type: GrantFiled: November 30, 2021Date of Patent: September 12, 2023Assignee: T-MOBILE INNOVATIONS LLCInventors: Harry W. Perlow, Walter F. Rausch
-
System and method of controlling unique identities of ambient electromagnetic power harvesting chips
Patent number: 11714985Abstract: A system for controlling assignment and management of identities in ambient electromagnetic power harvesting (AEPH) chips. The system comprises a processor; a non-transitory memory; and an application stored in the non-transitory memory that, when executed by the processor, allocates a plurality of unique AEPH identities, wherein each unique identity comprises an identity of a product item and an instance identity; stores the plurality of unique AEPH identities in a first immutable record in a datastore, wherein the unique AEPH identities are associated with an initial state; provides the plurality of unique AEPH identities to an original equipment manufacturer of AEPH chips; provides an application programming interface (API); authorizes a request to update a state associated with a first unique AEPH identity in the datastore; and adds a second immutable record to the database that associates the first unique AEPH identity with an updated state of the first unique AEPH identity.Type: GrantFiled: July 18, 2022Date of Patent: August 1, 2023Assignee: T-Mobile Innovations LLCInventors: Mark R. Bales, Lyle T. Bertz, Lyle W. Paczkowski, Harry W. Perlow -
Publication number: 20220094426Abstract: A terrestrial transceiver beamforms an uplink signal from an airborne transceiver. In the terrestrial transceiver, a radio wireles sly receives an airborne transceiver Identifier (ID) and reference signals from the airborne transceiver. A Baseband Unit (BBU) determines a beamforming instruction based on the airborne transceiver ID and the reference signals. The radio wireles sly transfers the beamforming instruction to the airborne transceiver. The airborne transceiver beamforms the uplink signal based on the beamforming instruction. The radio wirelessly receives the beamformed uplink signal from the airborne transceiver. The BBU receives the beamformed uplink signal from the radio.Type: ApplicationFiled: November 30, 2021Publication date: March 24, 2022Inventors: Harry W. Perlow, Walter F. Rausch
-
Patent number: 11239903Abstract: A wireless communication system beamforms an uplink from an airborne transceiver to a terrestrial transceiver. The airborne transceiver comprises antennas that have an antenna type an aperture beamwidth. The airborne transceiver transfers a transceiver ID to the terrestrial transceiver. The terrestrial transceiver initiates aerial uplink beamforming for the antenna type and the aperture beamwidth based on the airborne transceiver ID. The terrestrial transceiver determines uplink beamforming metrics and altitude for the airborne transmitter. The terrestrial transceiver generates an uplink beamforming instruction and an uplink power instruction for the antenna type and the aperture beamwidth of the airborne transceiver based on the uplink beamforming metrics and altitude. The terrestrial transceiver transfers the uplink beamforming instruction and the uplink power instruction to the airborne transceiver.Type: GrantFiled: April 8, 2020Date of Patent: February 1, 2022Assignee: Sprint Communications Company L.P.Inventors: Harry W. Perlow, Walter F. Rausch
-
Publication number: 20210320713Abstract: A wireless communication system beamforms an uplink from an airborne transceiver to a terrestrial transceiver. The airborne transceiver comprises antennas that have an antenna type an aperture beamwidth. The airborne transceiver transfers a transceiver ID to the terrestrial transceiver. The terrestrial transceiver initiates aerial uplink beamforming for the antenna type and the aperture beamwidth based on the airborne transceiver ID. The terrestrial transceiver determines uplink beamforming metrics and altitude for the airborne transmitter. The terrestrial transceiver generates an uplink beamforming instruction and an uplink power instruction for the antenna type and the aperture beamwidth of the airborne transceiver based on the uplink beamforming metrics and altitude. The terrestrial transceiver transfers the uplink beamforming instruction and the uplink power instruction to the airborne transceiver.Type: ApplicationFiled: April 8, 2020Publication date: October 14, 2021Inventors: Harry W. Perlow, Walter F. Rausch
-
Patent number: 8536949Abstract: A fixed-gain power amplifier receives a preamplifier output signal and produces a power output signal. The preamplifier output signal is amplified by the fixed-gain power amplifier to produce the power output signal. The variable-gain preamplifier receives an input signal, a preamplifier control signal, and produces the preamplifier output signal. The input signal is amplified by a preamplifier amount of gain by the variable-gain preamplifier to produce the preamplifier output signal. The preamplifier amount of gain is based on the preamplifier control signal. A variable attenuator receives the power output signal, an attenuator control signal, and produces an output signal. The power output signal is attenuated by an attenuator amount of attenuation by the variable attenuator to produce the output signal. The attenuator amount of attenuation is based on the attenuator control signal.Type: GrantFiled: October 22, 2009Date of Patent: September 17, 2013Assignee: Sprint Communications Company L.P.Inventors: Harry W. Perlow, Habib Riazi, Walter F. Rausch
-
Patent number: 8442467Abstract: In a wireless communication device, circuitry selects a first frequency band for a first wireless communication and transfers a pair of radio frequency signals at the first frequency band. An antenna receives and orthogonally transmits the radio frequency signals over a first patch antenna element that is resonant at the first frequency band. The circuitry selects a second frequency band for a second wireless communication and transfers a pair of radio frequency signals at the second frequency band and including a voltage component. The antenna receives the radio frequency signals including the voltage component, couples a second patch antenna element to the first patch antenna element in response to the voltage component, and orthogonally transmits the radio frequency signals over the coupled patch antenna elements that together are resonant at the second frequency band.Type: GrantFiled: February 18, 2009Date of Patent: May 14, 2013Assignee: Sprint Communications Company L.P.Inventors: Walter F. Rausch, Harry W. Perlow, Habib Riazi
-
Patent number: 8160831Abstract: A gyroscope monitoring system operates with an antenna system that has a gyroscope that controls the position of multiple antennas. The monitoring system receives data indicating reference signal strengths and test signal strengths for the antennas. The monitoring system determines differences between the reference signal strengths and the test signal strengths. The monitoring system processes the differences to determine if the gyroscope has lost reference point accuracy, and if so, then the monitoring system generates an indication that the gyroscope has lost reference point accuracy. In some examples, the monitoring system also determines reference point offsets for the gyroscope and provides the offsets to the gyroscope for use in motion measurements.Type: GrantFiled: July 15, 2009Date of Patent: April 17, 2012Assignee: Sprint Communications Company L.P.Inventors: Walter F. Rausch, Mohammad Wasif Hussain, Rushi D. Shah, Harry W. Perlow, Mohan R. Tammisetti, Harold Wayne Johnson
-
Patent number: 8027357Abstract: a communication system comprises a plurality of downstream transmission systems configured to transmit downstream wireless communications to an area having a plurality of sectors over a plurality of downstream channels to a plurality of users in the plurality of sectors and a plurality of upstream receiver systems configured to receive upstream wireless communications over a plurality of upstream channels from the plurality of users in the plurality sectors. In an embodiment, the plurality of upstream channels comprise multiple contention channels associated with each of the plurality of sectors and a plurality of bearer channels associated with each of the plurality of sectors and the plurality of upstream receiver systems are further configured to receive a plurality of requests from the plurality of users over the multiple contention channels for access to the plurality of bearer channels.Type: GrantFiled: June 8, 2006Date of Patent: September 27, 2011Assignee: Sprint Communications Compnay L.P.Inventors: Steve Dispensa, Emad M. Ramahi, John W. Montross, Charles M. Woods, Michael P. Denny, Benjamin E. Bellinder, George V. Moura, Dave McGinniss, Harry W. Perlow
-
Patent number: 8027646Abstract: A communication system is supplied for filtering and attenuating a receive signal in between a bi-directional antenna system and a bi-directional base station system. In the communication system, a first circulator is configured to receive a receive signal from a first bi-directional link coupled to the bi-directional antenna system and circulate the receive signal to a first uni-directional link. A signal processing system is configured to receive the receive signal from the first uni-directional link, filter and attenuate the receive signal, and transfer the receive signal to a second uni-directional link. A second circulator is configured to receive the receive signal from the second uni-directional link, circulate the receive signal to a second bi-directional link coupled to the bi-directional base station system, receive a transmit signal from the second bi-directional link, and circulate the transmit signal to a third uni-directional link.Type: GrantFiled: October 15, 2008Date of Patent: September 27, 2011Assignee: Clear Wireless LLCInventors: Walter F. Rausch, Harry W. Perlow, Habib Riazi
-
Patent number: 7733814Abstract: A time-division communication system wirelessly receives a communication signal during receive time periods and wirelessly transfers a communication signal during transmit time periods. These communication signals have multiple receive and transmit channels. The communication system circulates the received communication signal to various filters that pass particular receive channels and that reflect other receive channels back the circulator(s). Eventually, the reflected receive channels circulate to the appropriate filters and are passed. The filters also pass transmit channels to the circulator(s) where they are circulated and reflected until they combine into the transmit communication signal.Type: GrantFiled: May 19, 2008Date of Patent: June 8, 2010Inventors: Walter F. Rausch, Harry W. Perlow
-
Patent number: 7277727Abstract: A system and method for receiving a communication signal includes a timing source that generates a stable timing signal and a stabilized local oscillator that receives the stable timing signal and uses the stable timing signal as an input to generate a stabilized oscillator signal. An antenna receives the communication signal at a receiving frequency, and the communication signal is filtered and amplified. A low noise block converter uses the stabilized oscillator signal to convert the receiving frequency of the communication signal to a stable lower frequency. A fiber optic transmitter converts the communication signal to an optical signal and transmits the optical signal over fiber optic cable. A fiber optic receiver receives the optical signal over the fiber optic cable. The optical signal then can be converted to an electrical signal.Type: GrantFiled: November 22, 2000Date of Patent: October 2, 2007Assignee: Sprint Communications Company L.P.Inventors: Walter F. Rausch, Anthony A. Panella, Michael P. Denny, Harry W. Perlow, Bryan H. Scott
-
Patent number: 7113494Abstract: A communication system comprised of an upstream receiver system and a downstream transmission system in communication with a user. The downstream transmission system is configured to transmit downstream wireless communications to the user over a plurality of downstream channels. The upstream receiver system is configured to receive upstream wireless communications from the user over a plurality of upstream channels. The plurality of upstream channels includes more than one contention channel and a plurality of bearer channels. The upstream receiver system is configured to receive requests from the user, over the multiple contention channels, for access to the plurality of bearer channels for the upstream wireless communications.Type: GrantFiled: October 17, 2001Date of Patent: September 26, 2006Assignee: Sprint Communications Company L.P.Inventors: Steve Dispensa, Emad M. Ramahi, John W. Montross, Charles M. Woods, Michael P. Denny, Benjamin E. Bellinder, George V. Moura, Dave McGinniss, Harry W. Perlow