Patents by Inventor Harry Whitesell

Harry Whitesell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021433
    Abstract: Methods for depositing a hardmask with ions implanted at different tilt angles are described herein. By performing ion implantation to dope an amorphous carbon hardmask at multiple tilt angles, an evenly distributed dopant profiled can be created. The implant tilt angle will determine a dopant profile that enhances the carbon hardmask hardness.
    Type: Application
    Filed: October 13, 2022
    Publication date: January 18, 2024
    Inventors: Scott FALK, Rajesh PRASAD, Sarah Michelle BOBEK, Harry WHITESELL, Kurt DECKER-LUCKE, Kyu-Ha SHIM, Adaeze OSONKIE, Tomohiko KITAJIMA
  • Publication number: 20230041963
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 9, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Publication number: 20230029929
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Patent number: 11469107
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Publication number: 20200357640
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew RAJ MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Patent number: 10727059
    Abstract: Implementations described herein generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of amorphous carbon films on a substrate. In one implementation, a method of forming an amorphous carbon film is provided. The method comprises depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further comprises implanting a dopant or inert species into the amorphous carbon film in a second processing region. The dopant or inert species is selected from carbon, boron, nitrogen, silicon, phosphorous, argon, helium, neon, krypton, xenon or combinations thereof. The method further comprises patterning the doped amorphous carbon film. The method further comprises etching the underlayer.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sarah Bobek, Prashant Kumar Kulshreshtha, Rajesh Prasad, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal
  • Publication number: 20190172714
    Abstract: Implementations described herein generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of amorphous carbon films on a substrate. In one implementation, a method of forming an amorphous carbon film is provided. The method comprises depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further comprises implanting a dopant or inert species into the amorphous carbon film in a second processing region. The dopant or inert species is selected from carbon, boron, nitrogen, silicon, phosphorous, argon, helium, neon, krypton, xenon or combinations thereof. The method further comprises patterning the doped amorphous carbon film. The method further comprises etching the underlayer.
    Type: Application
    Filed: November 13, 2018
    Publication date: June 6, 2019
    Inventors: Sarah BOBEK, Prashant KUMAR KULSHRESHTHA, Rajesh PRASAD, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL
  • Patent number: 8138782
    Abstract: Embodiments of the present invention relate to a solar simulator module of a solar cell production line. In one embodiment the solar simulator receives a solar cell module in a horizontal position and reorients the module into a vertical position. A light source is oriented to emit a flash of light in a substantially horizontal orientation toward the vertically oriented solar cell module. In one embodiment, an automated labeling device affixes a label including the electrical characteristics measured onto a back surface of the solar cell module. In one embodiment, a plurality of solar cell modules are received and tested simultaneously.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 20, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Yacov Elgar, Danny Cam Toan Lu, Tzay-Fa Su, Jeffrey S. Sullivan, David Tanner, Harry Whitesell
  • Publication number: 20090179651
    Abstract: Embodiments of the present invention relate to a solar simulator module of a solar cell production line. In one embodiment the solar simulator receives a solar cell module in a horizontal position and reorients the module into a vertical position. A light source is oriented to emit a flash of light in a substantially horizontal orientation toward the vertically oriented solar cell module. In one embodiment, an automated labeling device affixes a label including the electrical characteristics measured onto a back surface of the solar cell module. In one embodiment, a plurality of solar cell modules are received and tested simultaneously.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 16, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yacov Elgar, Danny Cam Toan Lu, Tzay-Fa Su, Jeffrey S. Sullivan, David Tanner, Harry Whitesell
  • Publication number: 20060113038
    Abstract: Embodiments of the present invention are directed to a gas distribution system which distributes the gas more uniformly into a process chamber. In one embodiment, a gas distribution system comprises a gas ring including an outer surface and an inner surface, and a gas inlet disposed at the outer surface of the gas ring. The gas inlet is fluidicly coupled with a first channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of gas outlets are distributed over the inner surface of the gas ring, and are fluidicly coupled with a second channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of orifices are fluidicly coupled between the first channel and the second channel.
    Type: Application
    Filed: May 4, 2005
    Publication date: June 1, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Sudhir Gondhalekar, Robert Duncan, Siamak Salimian, Muhammad Rasheed, Harry Whitesell, Bruno Geoffrion, Padmanabhan Krishnaraj, Rudolf Gujer