Patents by Inventor Harshad K BHADESHIA

Harshad K BHADESHIA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10995395
    Abstract: Maraging steel alloys are disclosed. The alloys are produced by microalloying of the maraging steel alloy to form carbides at prior austenite grain boundaries to increase Zener drag. A particular example alloy consists essentially of, by weight, 7.4 to 8.4 percent nickel, 7.6 to 8.6 percent chromium, 8.4 to 9.4 percent cobalt, 1.8 to 2.2 percent molybdenum, 2 to 2.6 percent tungsten, 1.6 to 2 percent aluminium, 0.05 to 0.08 percent carbon, a carbide former selected from the group consisting of: niobium at a concentration of 0.25 to 0.28 percent; titanium, at a concentration of 0.2 to 0.28 percent; and vanadium, at a concentration of 0.21 to 0.4 percent; the balance being iron and incidental impurities.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: May 4, 2021
    Assignee: ROLLS-ROYCE plc
    Inventors: Harshad K Bhadeshia, Paul O Hill, Martin J Rawson, Dominik J Dziedzic, Zixin Huang
  • Patent number: 10457996
    Abstract: A nanocrystalline bainitic steel consisting of, by weight percentage: 0.3% to 0.6% carbon; 9.0% to 20.0% nickel; up to 10% cobalt; 1.0% to 4.5% aluminium; up to 0.5% molybdenum; up to 0.5% manganese; up to 0.5% tungsten; up to 3.0% chromium; and the balance being iron and impurities.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 29, 2019
    Assignee: ROLLS-ROYCE plc
    Inventors: Paul O Hill, Steve W Ooi, Christopher N Hulme-Smith, Harshad K Bhadeshia, Martin J Rawson, Mathew J Peet
  • Publication number: 20190309400
    Abstract: Maraging steel alloys are disclosed. The alloys are produced by microalloying of the maraging steel alloy to form carbides at prior austenite grain boundaries to increase Zener drag. A particular example alloy consists essentially of, by weight, 7.4 to 8.4 percent nickel, 7.6 to 8.6 percent chromium, 8.4 to 9.4 percent cobalt, 1.8 to 2.2 percent molybdenum, 2 to 2.6 percent tungsten, 1.6 to 2 percent aluminium, 0.05 to 0.08 percent carbon, a carbide former selected from the group consisting of: niobium at a concentration of 0.25 to 0.28 percent; titanium, at a concentration of 0.2 to 0.28 percent; and vanadium, at a concentration of 0.21 to 0.4 percent; the balance being iron and incidental impurities.
    Type: Application
    Filed: March 8, 2019
    Publication date: October 10, 2019
    Applicant: ROLLS-ROYCE plc
    Inventors: Harshad K. BHADESHIA, Paul O. HILL, Martin J. RAWSON, Dominik J. DZIEDZIC, Zixin HUANG
  • Publication number: 20170275716
    Abstract: A nanocrystalline bainitic steel consisting of, by weight percentage: 0.3% to 0.6% carbon; 9.0% to 20.0% nickel; up to 10% cobalt; 1.0% to 4.5% aluminium; up to 0.5% molybdenum; up to 0.5% manganese; up to 0.5% tungsten; up to 3.0% chromium; and the balance being iron and impurities.
    Type: Application
    Filed: February 23, 2017
    Publication date: September 28, 2017
    Applicant: ROLLS-ROYCE plc
    Inventors: Paul O HILL, Steve W OOI, Christopher N HULME-SMITH, Harshad K BHADESHIA, Martin J RAWSON, Mathew J PEET