Patents by Inventor Harshit Moondra

Harshit Moondra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12224761
    Abstract: An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: February 11, 2025
    Assignee: Texas Instruments Incorporated
    Inventors: Nithin Gopinath, Visvesvaraya A. Pentakota, Neeraj Shrivastava, Harshit Moondra
  • Publication number: 20240372557
    Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.
    Type: Application
    Filed: July 15, 2024
    Publication date: November 7, 2024
    Inventors: Narasimhan RAJAGOPAL, Nithin GOPINATH, Viswanathan NAGARAJAN, Neeraj SHRIVASTAVA, Visvesvaraya A. PENTAKOTA, Harshit MOONDRA, Abhinav CHANDRA
  • Publication number: 20240364276
    Abstract: Methods, apparatus, systems, and articles of manufacture are described for dynamic digital pre-distortion correction. An example system includes programmable circuitry operable to execute computer readable instructions to at least: generate signal statistics based on an input signal; group the signal statistics into a first group of signal statistics or a second group of signal statistics based on time constants of the signal statistics; decimate the first group of signal statistics; generate a first predistortion term based on the decimated first group of signal statistics; generate a second predistortion term based on the second group of signal statistics; and generate an output predistortion terminal based on the first predistortion term and the second predistortion term.
    Type: Application
    Filed: April 26, 2024
    Publication date: October 31, 2024
    Inventors: Chandrasekhar Sriram, Sarma Sundareswara Gunturi, Jawaharlal Tangudu, Harshit Moondra, Harsh Garg, Sanjay Pennam
  • Patent number: 12074607
    Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: August 27, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Narasimhan Rajagopal, Nithin Gopinath, Viswanathan Nagarajan, Neeraj Shrivastava, Visvesvaraya A. Pentakota, Harshit Moondra, Abhinav Chandra
  • Patent number: 11881867
    Abstract: In described examples, a circuit includes a calibration engine. The calibration engine generates multiple input codes. A digital to analog converter (DAC) is coupled to the calibration engine, and generates a first calibration signal in response to a first input code of the multiple input codes. An analog to digital converter (ADC) is coupled to the DAC, and generates multiple raw codes responsive to the first calibration signal. A storage circuit is coupled to the ADC and stores a first output code corresponding to the first input code. The first output code is obtained using the multiple raw codes generated by the ADC.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 23, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Narasimhan Rajagopal, Eeshan Miglani, Chirag Chandrahas Shetty, Neeraj Shrivastava, Shagun Dusad, Srinivas Kumar Reddy Naru, Nithin Gopinath, Charls Babu, Shivam Srivastava, Viswanathan Nagarajan, Jagannathan Venkataraman, Harshit Moondra, Prasanth K, Visvesvaraya Appala Pentakota
  • Publication number: 20230387932
    Abstract: A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.
    Type: Application
    Filed: May 26, 2022
    Publication date: November 30, 2023
    Inventors: Narasimhan RAJAGOPAL, Nithin GOPINATH, Viswanathan NAGARAJAN, Neeraj SHRIVASTAVA, Visvesvaraya A. PENTAKOTA, Harshit MOONDRA, Abhinav CHANDRA
  • Publication number: 20230344436
    Abstract: An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Nithin Gopinath, Visvesvaraya A. Pentakota, Neeraj Shrivastava, Harshit Moondra
  • Publication number: 20220247420
    Abstract: In described examples, a circuit includes a calibration engine. The calibration engine generates multiple input codes. A digital to analog converter (DAC) is coupled to the calibration engine, and generates a first calibration signal in response to a first input code of the multiple input codes. An analog to digital converter (ADC) is coupled to the DAC, and generates multiple raw codes responsive to the first calibration signal. A storage circuit is coupled to the ADC and stores a first output code corresponding to the first input code. The first output code is obtained using the multiple raw codes generated by the ADC.
    Type: Application
    Filed: September 7, 2021
    Publication date: August 4, 2022
    Inventors: Narasimhan Rajagopal, Eeshan Miglani, Chirag Chandrahas Shetty, Neeraj Shrivastava, Shagun Dusad, Srinivas Kumar Reddy Naru, Nithin Gopinath, Charls Babu, Shivam Srivastava, Viswanathan Nagarajan, Jagannathan Venkataraman, Harshit Moondra, Prasanth K, Visvesvaraya Appala Pentakota