Patents by Inventor Harshwardhan D. Karve

Harshwardhan D. Karve has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11407442
    Abstract: A steer-by-wire system includes a transmission torque sensor, a handwheel position sensor, and a controller. The transmission torque sensor is configured to measure and output a transmission torque signal. The handwheel position sensor is configured to measure and output a handwheel position signal. The controller includes an angle-based load calculation submodule, a torque steer ratio calculation submodule, and a torque control module. The angle-based load calculation submodule is configured to transform the transmission torque signal and the handwheel position signal into an estimated second load value. The torque steer ratio calculation submodule is configured to transform the estimated second load value, a first load value indicative of roadwheel load including torque steer influence, and the transmission torque signal into a torque steer ratio.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 9, 2022
    Assignee: Steering Solutions IP Holding Corporation
    Inventors: Harshwardhan D. Karve, Tejas M. Varunjikar
  • Publication number: 20210031827
    Abstract: A steer-by-wire system includes a transmission torque sensor, a handwheel position sensor, and a controller. The transmission torque sensor is configured to measure and output a transmission torque signal. The handwheel position sensor is configured to measure and output a handwheel position signal. The controller includes an angle-based load calculation submodule, a torque steer ratio calculation submodule, and a torque control module. The angle-based load calculation submodule is configured to transform the transmission torque signal and the handwheel position signal into an estimated second load value. The torque steer ratio calculation submodule is configured to transform the estimated second load value, a first load value indicative of roadwheel load including torque steer influence, and the transmission torque signal into a torque steer ratio.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Harshwardhan D. Karve, Tejas M. Varunjikar
  • Patent number: 10793188
    Abstract: Technical solutions are described for generating and providing a motor torque command in electric systems such as an electric power steering (EPS) system. For example, an example EPS system includes a motor, and a controller that operates the motor to generate torque. The controller determines a torque reference twist based on a torque reference. The controller further determines a motor angle reference twist based on an angle-difference by multiplying the angle-difference by an autonomous mode enable signal. The autonomous mode enable signal is indicative whether the EPS is operating in autonomous mode. The controller further computes a total reference twist based on the torque reference twist and the motor angle reference twist, and computes a motor angle reference based on the total reference twist and a handwheel angle. The controller further generates the motor torque command using the motor angle reference, and sends the motor torque command to the motor.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: October 6, 2020
    Assignee: Steering Solution IP Holding Corporation
    Inventors: Harshwardhan D. Karve, Jens Dittmer, Anthony J. Champagne
  • Publication number: 20190202498
    Abstract: Technical solutions are described for generating and providing a motor torque command in electric systems such as an electric power steering (EPS) system. For example, an example EPS system includes a motor, and a controller that operates the motor to generate torque. The controller determines a torque reference twist based on a torque reference. The controller further determines a motor angle reference twist based on an angle-difference by multiplying the angle-difference by an autonomous mode enable signal. The autonomous mode enable signal is indicative whether the EPS is operating in autonomous mode. The controller further computes a total reference twist based on the torque reference twist and the motor angle reference twist, and computes a motor angle reference based on the total reference twist and a handwheel angle. The controller further generates the motor torque command using the motor angle reference, and sends the motor torque command to the motor.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Harshwardhan D. Karve, Jens Dittmer, Anthony J. Champagne