Patents by Inventor Hartley Owen

Hartley Owen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4925455
    Abstract: A process is disclosed for converting a light hydrocarbon feedstock that contains a mixture of linear and branched olefins to ether-rich high octane gasoline streams that include tertiary alkyl and isoalkyl ethers such as MTBE, TAME, methyl isopropyl ether (MIPE), and methyl sec-butylether (MSBE). Further, it has been discovered that, following etherification unreacted paraffins in the process can be dehydrogenated to produce C.sub.3 -C.sub.4 olefins which can be recycled to the etherification process. The conversion is achieved by utilizing the differing reactivity of tertiary olefins under selected conditions compared to linear olefins in the catalyzed etherification processes. The process integrates a first stage tertiary olefin etherification, separation of ether-rich gasoline and a second stage linear olefin etherification to produce a second ether rich gasoline stream.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: May 15, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4926003
    Abstract: A high pressure process is disclosed for oligomerizing a lower olefin-containing feed to produce distillate or lubes without having to regenerate spent catalyst. Directly coupling the operation in tandem of a MOG (Mobil Olefin to Gasoline) riser reactor and a fluid bed MODL (Mobil Olefin to Distillate or Lubes) reactor, each containing a medium pore size siliceous metallosilicate crystalline shape selective zeolite catalyst, and each operating so that the effluent from each leaves in the super-dense phase, produces the desired product. The MOG riser operates in the transport regime at sufficiently high severity so as to make a "distillate-rich" gasoline effluent with spent catalyst from the MODL reactor. The MODL reactor operates in the turbulent regime at low severity, with catalyst having a lower coke content than that of riser catalyst, to produce a major portion by wt of either distillate or lubes, depending upon the chosen mode of operation, with excellent per pass conversion of olefins.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: May 15, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4919896
    Abstract: A multi-stage catalytic olefin upgrading reactor system for converting lower olefinic feedstock to heavier liquid hydrocarbon product.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: April 24, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Hartley Owen, Samuel A. Tabak
  • Patent number: 4917790
    Abstract: A fluidized catalytic cracking process and apparatus operates with a two stage hot stripper between the reactor and catalyst regenerator. Addition of hot, regenerated catalyst to spent catalyst from the reactor heats the spent catalyst in the first stripping stage, which preferably uses steam stripping gas. The second stage of stripping occurs about a heat removal means, such as a stab-in heat exchanger tube bundle, which removes heat from the catalyst during the second stage of stripping. Steam or flue gas may be used in the second stripping stage to fluidize catalyst, improve heat transfer and simultaneously strip the catalyst.
    Type: Grant
    Filed: April 10, 1989
    Date of Patent: April 17, 1990
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 4912273
    Abstract: Alkanes, preferably lower alkanes, are converted to olefins in a `third bed` external catalyst cooler (ECC) in which hot catalyst from a first regenerator (`second bed`) operating in conjunction with a fluid catalytic cracker (`first bed`) thermally cracks and dehydrogenates the alkanes. Because this is an endothermic reaction, the catalyst is autogeneously cooled before it is recirculated to the FCC regenerator. The cracking catalyst is the catalyst of choice in the FCC reactor. The conversion of alkanes to olefins is tailored to provide a mixed feed for an aromatization reactor (`fourth bed`) which feed is proportioned to provide a substantially heat-balanced reaction in the aromatization reactor, that is, requiring no additional heat other than that which is provided by the feed and the heat of reaction. A second regenerator (`fifth bed`) is provided for the aromatization reactor, preferably in a moving bed reactor system. This reactor produces a predominately aromatic hydrocarbon stream.
    Type: Grant
    Filed: January 17, 1989
    Date of Patent: March 27, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4909993
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow stripping gas to enter the conduit to improve the separation of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: October 19, 1988
    Date of Patent: March 20, 1990
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4898717
    Abstract: An integrated process is provided for converting methanol, dimethylether or the like to heavy hydrocarbon products, especially distillate range hydrocarbons. In a first stage catalytic process oxygenate feedstock is converted to lower olefins. C.sub.3.sup.+ olefins are selectively sorbed in an interstage sorption fractionator and passed along with gasoline sorbent to a second stage oligomerization reactor. Distillate range hydrocarbons are useful as diesel fuel or the like.
    Type: Grant
    Filed: January 7, 1985
    Date of Patent: February 6, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Chung H. Hsia, Hartley Owen, Bernard S. Wright
  • Patent number: 4899002
    Abstract: A process for the increased production of olefinic gasoline is described incorporating the integration of olefins to gasoline conversion under moderate severity conditions in contact with zeolite type catalyst with oxygenates to olefins conversion. The product of the olefins to gasoline conversion is passed to an olefins to gasoline and distillate (MOGD) conversion zone for distillate production. Liquid recycle requirements, feed throughput and/or the number of MOGD fixed bed stages are reduced for the MOGD process and overall process costs are lowered. The process includes the use of common catalyst handling and regeneration steps for the integrated processes.
    Type: Grant
    Filed: July 25, 1988
    Date of Patent: February 6, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4898716
    Abstract: An improved catalytic process for converting an olefinic feedstock comprising ethylene and C.sub.3.sup.+ olefins to heavier liquid hydrocarbon product comprising the steps of:(a) prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C.sub.3.sup.
    Type: Grant
    Filed: January 14, 1985
    Date of Patent: February 6, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Chung H. Hsia, Hartley Owen, Bernard S. Wright
  • Patent number: 4899015
    Abstract: An improved process is described for the conversion of olefins to gasoline in contact with zeolite type catalyst. Improvement comprises incorporating a fractionation step in the separation of the effluent stream from the olefins to gasoline conversion reactor such that LPG components in the effluent stream are separated and recovered as well as a stream comprising C.sub.5 + gasoline range boiling liquids. In a preferred embodiment the fractionation step is integrated with FCC unsaturated gas plant fractionators providing advantages in the utilization of common fractionation equipment resulting in significant reduction in process energy and investment requirement.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: February 6, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4897245
    Abstract: In the conversion of light olefins to heavier hydrocarbons, an improved recovery technique is provided for selectively removing unreacted light olefins from a catalytic reactor effluent. This system is useful in converting ethene-rich feedstocks to gasoline and/or distillate products, particularly in oligomerization processes employing shape selective siliceous catalysts such as ZSM-5 type zeolites. By recycling gasoline-range hydrocarbons as a sorbent liquid, unreacted C.sub.2.sup.+ components may be absorbed from reactor effluent vapor and returned for further contact with the catalyst.
    Type: Grant
    Filed: December 6, 1984
    Date of Patent: January 30, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Chung-Hueng Hsia, Hartley Owen, Bernard S. Wright
  • Patent number: 4895637
    Abstract: This application is directed to a process and apparatus for regenerating an elutriable mixture of fluidized catalytic cracking (FCC) catalyst and a demetallizing additive. Deactivated catalyst and coke containing additive are added to a single dense bed regenerator. Within the regenerator, differences in settling velocity segregate the elutriable mixture into a lower dense bed containing most of the additive and a contiguous upper dense bed containing most of the FCC catalyst. Some regeneration gas is added to the lower dense bed to at least partially decoke the additive, while additional regeneration gas is added to the upper dense bed. Decoked additive and regenerated FCC catalyst are preferably withdrawn separately and charged to a riser reactor for demetallizing and catalytic cracking of heavy feed. Flue gas is withdrawn from the regenerator from a dilute phase vapor space above the single dense bed.
    Type: Grant
    Filed: October 18, 1988
    Date of Patent: January 23, 1990
    Assignee: Mobil Oil Corporation
    Inventor: Hartley Owen
  • Patent number: 4892643
    Abstract: The present invention discloses a catalytic cracking operation featuring a single riser in which a variety of hydrocarbon conversion reactions takes place, a stripping unit in which entrained hydrocarbon material is removed from catalyst and a regeneration zone in which spent cracking catalyst is regenerated, which comprises:(a) converting a relatively high boiling charge material introduced to the riser at a lower level thereof in the presence of a first catalyst component which is an amorphous cracking catalyst and/or a large pore crystalline silicate cracking catalyst to provide lighter products including significant quantities of naphtha; and,(b) converting a naphtha charge material introduced to the riser at a higher level thereof in the presence of a second catalyst componet which is a shape selective medium pore crystalline silicate zeolite catalyst to provide a relatively high octane gasoline product.
    Type: Grant
    Filed: April 11, 1989
    Date of Patent: January 9, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 4891457
    Abstract: A staged reactor technique for converting ethene-rich olefinic feedstock to heavier hydrocarbons, particularly gasoline and distillate range products. By employing low temperature and high temperature separators, an economic recycle is provided for each stage.
    Type: Grant
    Filed: September 13, 1985
    Date of Patent: January 2, 1990
    Inventors: Hartley Owen, Bernard S. Wright
  • Patent number: 4888103
    Abstract: An improved process for stripping, or desorbing, entrained hydrocarbon material and, where present, sulfur-containing material, from a catalyst mixture recovered from a catalytic cracking reaction zone is described which comprises:(a) providing a quantity of catalyst mixture containing entrained hydrocarbon material and, optionally, sulfur-containing material, in at least one stripping zone in which a stripping gas removes said entrained hydrocarbon material and, where present, sulfur-containing material, the catalyst mixture comprising, as a first catalyst component, an amorphous and/or large pore crystalline cracking catalyst and, as a second catalyst component, a shape selective medium pore crystalline silicate zeolite catalyst, said first and second catalyst components being present in admixture within a common stripping zone or segregated into separate stripping zones; and,(b) conducting an exothermic reaction within the common stripping zone or within the separate stripping zone containing segregated se
    Type: Grant
    Filed: September 3, 1986
    Date of Patent: December 19, 1989
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 4885421
    Abstract: An integrated reactor system for conversion of methanol to ether-containing high octane gasoline and distillate. Methanol is converted to olefins in the presence of zeolite MTO catalyst. C.sub.4 and C.sub.5 olefin fraction is converted to MTBE and TAME in the presence of excess methanol and acid etherification catalyst. Unreacted methanol and hydrocarbons are passed to an olefins to gasoline and distillate oligomerization unit in conjunction with C.sub.3, C.sub.6 and C.sub.7 olefins from the methanol to olefins unit whereby distillate and LPG products are produced. Gasoline products from the oligomerization unit are passed to the etherification unit whereby an ether-rich gasoline fraction is separated.
    Type: Grant
    Filed: November 16, 1988
    Date of Patent: December 5, 1989
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4879428
    Abstract: An improved olefin upgrading technique has been developed for increasing production of premium heavy hydrocarbons, such as distillate fuel, from lower olefinic feedstock. During recovery and recycle of intermediate range hydrocarbons products, a process has been found for withdrawing a fraction rich in C.sub.5 -C.sub.9 gasoline range olefinic hydrocarbons from the oligomerization reactor effluent stream. By separating the reaction effluent in a multistage distillation system, fractionation feed can be separated into a heavier bottoms stream rich in C.sub.10+ hydrocarbons and a light hydrocarbon overhead, while withdrawing a liquid stream as an overflash fractionation stream rich in intermediate hydrocarbons. The overflash stream is combined to form a portion of the recycle stream to the reactor, thereby providing a more efficient and lower cost recovery process.
    Type: Grant
    Filed: March 3, 1988
    Date of Patent: November 7, 1989
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4877921
    Abstract: A turbulent super-dense fluid-bed of a medium pore zeolite metallosilicate catalyst is operated at low WHSV, outside a critical region in the phase diagram of the hydrocarbon mixture in the reactor, at or above conditions of pressure P.sub.max and temperature T.sub.max at which a liquid phase may not form. The result is oligomerization of a "light gas" predominantly C.sub.3 -C.sub.5 olefin feed, the remainder being mainly C.sub.3 -C.sub.5 lower alkanes. The oligomerized product is a "heavies" stream, namely, distillate and lube oil range hydrocarbons, with a minor proportion by weight of gasoline range hydrocarbons. The reactor may be operated in either a C.sub.1.sup.+ distillate mode, or, a C.sub.22.sup.+ lubes mode. The superdense fluid bed with a density, measured at the bottom of the reaction zone, greater than 500 kg/m.sup.3, and operates at a temperature in the range from about 204.degree. C. (400.degree. F.) to about 371.degree. C. (700.degree. F.
    Type: Grant
    Filed: April 20, 1988
    Date of Patent: October 31, 1989
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4875994
    Abstract: A process and apparatus for cracking heavy hydrocarbons using a mixture of fluid cracking catalyst and a demetallizing additive differing in physical characteristics from the cracking catalyst is described. A heavy, metals containing feed such as a resid contacts demetallizing additive in the base of a riser reactor. The demetallized resid is cracked by contact with a stream of hot, regenerated catalyst. A mixture of metal containing additive, deactivated cracking catalyst, and cracked products is discharged from the riser. The metal containing additive and deactivated catalyst are stripped, preferably with steam, and charged to a two-stage regenerator. The first stage of the regenerator partially regenerates the cracking catalyst and separates it by elutriation from the demetallizing additive, which accumulates as a dense phase fluidized bed in a lower portion of the first stage regenerator.
    Type: Grant
    Filed: June 10, 1988
    Date of Patent: October 24, 1989
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4874503
    Abstract: A catalytic cracking process is described featuring multiple risers in which a variety of hydrocarbon conversion reactions takes place, a stripping unit in which entrained hydrocarbon material is removed from catalyst and a regeneration zone in which spent cracking catalyst is regenerated, which comprises:(a) converting a relatively high boiling hydrocarbon charge material in a first riser in the presence of a catalyst mixture comprising, as a first catalyst component, an amorphous cracking catalyst and/or a large pore crystalline cracking catalyst and, as a second catalyst component, a shape selective medium pore crystalline silicate to provide lighter products including naphtha and C.sub.3 and/or C.sub.4 olefin;(b) converting an ethylene-rich charge material introduced to a second riser at a lower level thereof in the presence of said catalyst mixture to provide heavier products and to increase the temperature of the catalyst in said region; and,(c) converting C.sub.3 and/or C.sub.
    Type: Grant
    Filed: December 22, 1988
    Date of Patent: October 17, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper