Patents by Inventor Hartmuth Hecht

Hartmuth Hecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944377
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises an imaging system that receives a return signal from the aperture. The return signal received from the aperture has a second path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: April 2, 2024
    Assignee: SCITON, INC.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus, Jason Pozner
  • Patent number: 11944378
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises a camera that receives light from the aperture. The light received from the aperture has a second optical path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam but generally reflects at least a portion of the light from the aperture toward the camera.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: April 2, 2024
    Assignee: SCITON, INC.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus
  • Publication number: 20220125513
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises an imaging system that receives a return signal from the aperture. The return signal received from the aperture has a second path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or RRL beam.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 28, 2022
    Applicant: SCITON, INC.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus, Jason Pozner
  • Publication number: 20220117661
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises a camera that receives light from the aperture. The light received from the aperture has a second optical path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam but generally reflects at least a portion of the light from the aperture toward the camera.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 21, 2022
    Applicant: SCITON, INC.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus
  • Patent number: 11219485
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises a camera that receives light from the aperture. The light received from the aperture has a second optical path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam but generally reflects at least a portion of the light from the aperture toward the camera.
    Type: Grant
    Filed: February 11, 2017
    Date of Patent: January 11, 2022
    Assignee: Sciton, Inc.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus
  • Patent number: 11213350
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises an imaging system that receives a return signal from the aperture. The return signal received from the aperture has a second path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam.
    Type: Grant
    Filed: February 11, 2017
    Date of Patent: January 4, 2022
    Assignee: Sciton, Inc.
    Inventors: David Boinagrov, Frank Garcia, Hartmuth Hecht, James L. Hobart, Daniel K. Negus, Jason Pozner
  • Publication number: 20210282855
    Abstract: In one aspect, a method of tightening skin and/or reducing scar tissue is described herein. The method comprises performing a fractional laser ablation in a treatment area of the skin, thereby removing a column of the skin and forming a columnar vacancy in the skin, the columnar vacancy having a perimeter defined by a first side and a second side opposite the first side, the first side and the second side each comprising an epidermal layer, a dermal layer, and a subcutaneous layer of skin. The first side of the columnar vacancy is contacted to the second side of the columnar vacancy, thereby dosing the columnar vacancy.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 16, 2021
    Inventors: David BOINAGROV, James L. HOBART, Daniel K. NEGUS, Hartmuth HECHT, Frank GARCIA
  • Publication number: 20190125445
    Abstract: In one aspect, methods of laser treatment of skin are described herein. In some embodiments, such a method comprises forming at least one fractional column or region of tissue in skin of a patient, wherein the fractional column has a structure along a z-direction orthogonal to an exterior surface of the skin, and wherein the structure of the fractional column varies along the z-direction in one or more ways. For instance, the structure of the fractional column can vary along the z-direction in one or more of the following ways: angular orientation relative to the exterior surface of the skin; ablated channel width or diameter; coagulation zone thickness; coagulation zone offset in an x-direction or a y-direction perpendicular to the z-direction; coagulation zone intensity; and thermal insult. Moreover, in some cases, the fractional column is defined by a plurality of segments that differ in a manner described above.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 2, 2019
    Inventors: Frank GARCIA, David BOINAGROV, Hartmuth HECHT, James L. HOBART, Daniel K. NEGUS
  • Publication number: 20190059995
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises an imaging system that receives a return signal from the aperture. The return signal received from the aperture has a second path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam.
    Type: Application
    Filed: February 11, 2017
    Publication date: February 28, 2019
    Inventors: David BOINAGROV, Frank GARCIA, Hartmuth HECHT, James L. HOBART, Daniel K. NEGUS, Jason POZNER
  • Publication number: 20190038354
    Abstract: In one aspect, devices for light treatment of skin are described herein. A device described herein, in some embodiments, comprises an interior compartment having a proximal end and a distal end, and an optical aperture disposed at the distal end. The device also comprises a laser or BBL source that produces a laser or BBL beam. The laser or BBL beam has a first optical path within the interior compartment, between the proximal end and the distal end. Additionally, the first optical path exits the interior compartment through the optical aperture. The device further comprises a camera that receives light from the aperture. The light received from the aperture has a second optical path within the interior compartment. Further, a selectively reflective optical element is disposed in the first and second optical paths. The selectively reflective optical element generally transmits the laser or BBL beam but generally reflects at least a portion of the light from the aperture toward the camera.
    Type: Application
    Filed: February 11, 2017
    Publication date: February 7, 2019
    Inventors: David BOINAGROV, Frank GARCIA, Hartmuth HECHT, James L. HOBART, Daniel K. NEGUS
  • Patent number: 6130900
    Abstract: In an intracavity frequency-converted pulsed laser, output-pulses having a duration longer than three milliseconds are simulated by a burst of temporally spaced-apart pulses having a shorter duration, the burst duration being about equal to the duration of the pulse being simulated. In an example of the laser including a KTP crystal providing frequency-doubling and having an Nd:YAG gain-medium for providing fundamental radiation at a wavelength of 1064 nm, a thin-etalon having a thickness of about 75 micrometers is included in the laser cavity to suppress generation of laser-radiation at wavelengths of 1061 and 1074 nm. Suppression of oscillation at these wavelengths prevents damage in the KTP crystal due to abrupt intracavity power surges thereby preventing damage to the KTP crystal. Examples of intracavity-pumped optical parametric oscillators including a thin etalon and operated in a similar manner are also disclosed.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: October 10, 2000
    Assignee: Coherent, Inc.
    Inventors: John F. Black, George Frangineas, Hartmuth Hecht
  • Patent number: 6026112
    Abstract: A laser beam delivery system that uses total internal reflection inside prisms to redirect the high powered broadband output laser power from a laser beam source to the intended target. An articulated arm having straight segments connected end to end by rotatable joints attaches to a laser source that produces a laser output beam having at least two wavelengths. A prism is located at each joint wherein the laser output beam travelling down each of the segments is re-directed down the subsequent segment. The prisms are oriented to re-direct the laser beam by total internal reflection. Anti-reflective coatings are formed on each prism surface where the beam enters and exits each of the prisms.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: February 15, 2000
    Assignee: Coherent Inc.
    Inventors: Hartmuth Hecht, Mark Lange, James Hobart
  • Patent number: 5661737
    Abstract: A detector system for providing a plurality of output beams for monitoring the output beam of a laser system. The detector system includes a refractive element having a pair of opposing spaced-apart faces. The laser beam enters the refractive element where it undergoes multiple internal reflections off of the faces. A portion of the beam is transmitted out of the refractive element at each of the reflections to form a plurality of increasingly attenuated output beams having different power intensities from each other. A plurality of detectors are positioned for measuring the different beam characteristics of the plurality of attenuated output beams, which correspond to the beam characteristics of the laser output beam.
    Type: Grant
    Filed: February 9, 1996
    Date of Patent: August 26, 1997
    Assignee: Coherent, Inc.
    Inventors: Hartmuth Hecht, Edward Reed
  • Patent number: 5353297
    Abstract: A resonator design is disclosed particularly suited for a RF excited, carbon dioxide, slab waveguide laser. The laser includes a pair of elongated electrodes spaced apart in a manner to define a slab discharge region having a narrow waveguide axis between the electrodes and a wide axis extending parallel to the electrode surfaces. The resonator is a hybrid design and is a stable, waveguide in the narrow axis, and a negative branch unstable resonator in the wide axis. A pair of mirrors are provided at each end of the electrodes to create a folded beam path in the wide axis. The folded configuration increases the effective length of the resonator which substantially increases the power stability of the laser. The multiple mirror resonator can also be used to increase the width of the discharge region while minimizing spherical aberrations. Each leg of the path has the alignment characteristics of a negative branch unstable resonator so that the alignment of the overall resonator is highly stable.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: October 4, 1994
    Assignee: Coherent, Inc.
    Inventors: Dale E. Koop, Hartmuth Hecht
  • Patent number: 5014281
    Abstract: A gas laser includes a laser gas circuit having a by-pass line. The by-pass line includes a condenser for removing water vapor. During normal operation, the laser gas flows through the by-pass line as well as through the remaining portion of the laser gas circuit so that the water vapor portion in the laser gas flowing through the by-pass line is partly removed by the condenser. For the purpose of defrosting the condenser, the by-pass line is isolated from the rest of the laser gas circuit and, if required, is evacuated several times and rinsed with fresh laser gas. During normal operation, the gas laser can be operated with a substantially lower fresh gas supply than piror art circulating lasers.
    Type: Grant
    Filed: December 19, 1989
    Date of Patent: May 7, 1991
    Assignee: Coherent, Inc.
    Inventors: Hartmuth Hecht, Wolfgang Paul, Anton Baumgartner