Patents by Inventor Harue Osaka

Harue Osaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170117470
    Abstract: A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; ? represents a substituted or unsubstituted naphthyl group; ? represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R1 to R8 each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue OSAKA, Takahiro USHIKUBO, Nobuharu OHSAWA, Satoshi SEO, Tsunenori SUZUKI
  • Publication number: 20170104157
    Abstract: An object is to provide a new fluorene derivative as a good light-emitting material for organic EL elements. A fluorene derivative represented by General Formula (G1) is provided. In the formula, R1 to R8 separately represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group. Further, ?1 to ?4 separately represent a substituted or unsubstituted phenylene group. Ar1 represents a substituted or unsubstituted condensed aromatic hydrocarbon having 14 to 18 carbon atoms forming a ring. Ar2 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring. Ar3 represents an alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. Further, j, m, and n separately represent 0 or 1, and p represents 1 or 2.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Inventors: Kaori OGITA, Tsunenori SUZUKI, Harue OSAKA, Satoshi SEO
  • Patent number: 9614164
    Abstract: A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and ?3). Further, a substituent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and ?3).
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 4, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Harue Osaka, Takako Takasu, Hiroshi Kadoma, Yuko Kawata, Satoko Shitagaki, Hiromi Nowatari, Tsunenori Suzuki, Nobuharu Ohsawa, Satoshi Seo
  • Publication number: 20170054088
    Abstract: A composite material including an organic compound and an inorganic compound and having a high carrier-transport property is provided. A composite material having a high carrier-injection property to an organic compound is provided. A composite material in which light absorption due to charge transfer interaction is unlikely to occur is provided. A light-emitting element having high emission efficiency is provided by including the composite material. A light-emitting element having a low drive voltage is provided. A light-emitting element having a long lifetime is provided. A composite material including a heterocyclic compound having a dibenzothiophene skeleton or a dibenzofuran skeleton and an inorganic compound exhibiting an electron-accepting property with respect to the heterocyclic compound is provided.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 23, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi SEO, Harue OSAKA, Takako TAKASU
  • Patent number: 9564597
    Abstract: A substance having a hole-transport property and a wide band gap is provided. A fluorene compound represented by a general formula (G1) is provided. In the general formula (G1), ?1 and ?2 separately represent a substituted or unsubstituted arylene group having 6 to 13 carbon atoms; Ar1 represents a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, a substituted or unsubstituted 4-dibenzothiophenyl group, or a substituted or unsubstituted 4-dibenzofuranyl group; n and k separately represent 0 or 1; Q1 represents sulfur or oxygen; and R1 to R15 separately represent hydrogen, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: February 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Takako Takasu, Hiromi Nowatari, Satoko Shitagaki, Nobuharu Ohsawa, Satoshi Seo, Kyoko Takeda, Sachiko Kawakami, Tsunenori Suzuki
  • Publication number: 20170025621
    Abstract: A light-emitting element that contains a fluorescent compound, which has high efficiency is provided. A light-emitting element in which the proportion of delayed fluorescence to the total light emitted from the light-emitting element is higher than that in a conventional light-emitting element is provided. Emission efficiency of the light-emitting element containing a fluorescent compound can be improved by increasing the probability of TTA caused by an organic compound in an EL layer, converting energy of triplet excitons, which does not contribute to light emission, into energy of singlet excitons, and making the fluorescent compound emit light by energy transfer of the singlet excitons.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kunihiko Suzuki, Satoshi SEO, Harue OSAKA, Tsunenori SUZUKI, Naoaki HASHIMOTO, Kyoko TAKEDA
  • Publication number: 20170025616
    Abstract: An organic compound having a high T1 level is provided. An element emitting phosphorescence in the blue and green regions is provided. An organic compound having a high glass-transition temperature is provided. A light-emitting element, a light-emitting device, an electronic appliance, or a lighting device having high heat resistance is provided. A light-emitting element includes at least a hole-transport layer, a light-emitting layer, and an electron-transport layer between an anode and a cathode. An anthracene compound represented by General Formula (G1) is contained in at least one of the hole-transport layer, the light-emitting layer, and the electron-transport layer.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Masato SUZUKI, Nobuharu OHSAWA, Satoko SHITAGAKI, Harue OSAKA
  • Patent number: 9553273
    Abstract: An object is to provide a new fluorene derivative as a good light-emitting material for organic EL elements. A fluorene derivative represented by General Formula (G1) is provided. In the formula, R1 to R8 separately represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group. Further, ?1 to ?4 separately represent a substituted or unsubstituted phenylene group. Ar1 represents a substituted or unsubstituted condensed aromatic hydrocarbon having 14 to 18 carbon atoms forming a ring. Ar2 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring. Ar3 represents an alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. Further, j, m, and n separately represent 0 or 1, and p represents 1 or 2.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: January 24, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaori Ogita, Tsunenori Suzuki, Harue Osaka, Satoshi Seo
  • Patent number: 9540315
    Abstract: A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; ? represents a substituted or unsubstituted naphthyl group; ? represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R1 to R8 each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: January 10, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Takahiro Ushikubo, Nobuharu Ohsawa, Satoshi Seo, Tsunenori Suzuki
  • Publication number: 20160380223
    Abstract: To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.
    Type: Application
    Filed: September 7, 2016
    Publication date: December 29, 2016
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yusuke Nonaka, Satoshi SEO, Harue OSAKA, Tsunenori SUZUKI, Takeyoshi WATABE
  • Patent number: 9525143
    Abstract: A novel triarylamine compound having a bipolar property is provided. The triarylamine compound can be used for a hole-injection layer, a hole-transport layer, a light-emitting layer, or an electron-transport layer in a light-emitting element. The triarylamine compound can also be used as a host material with a light-emitting material which emits relatively short-wavelength light, in a structure where the host material and the guest material constitute a light-emitting layer. The triarylamine compound of the present invention is a fluorescent compound and therefore can also be used as a light-emitting substance of a light-emitting layer. A light-emitting element having high emission efficiency is provided. A light-emitting device, an electronic device, or a lighting device having low power consumption is provided.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: December 20, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Takahiro Ushikubo, Tsunenori Suzuki, Nobuharu Ohsawa
  • Patent number: 9502666
    Abstract: A light-emitting element emitting phosphorescence and having high emission efficiency, in which a property of injecting holes to a light-emitting layer is increased, is provided. The light-emitting layer of the light-emitting element includes a first organic compound represented by the following general formula (G1) and a second organic compound which is a phosphorescent compound. The difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is lower than or equal to 0.3 eV.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 22, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomonori Nakayama, Takako Takasu, Satoko Shitagaki, Harue Osaka, Toshiki Hamada
  • Publication number: 20160336517
    Abstract: Provided is a novel substance that can be used in an element capable of emitting phosphorescence, a novel substance that contributes to high emission efficiency, or a novel substance that contributes to light emission with high color purity. A light-emitting element includes a pair of electrodes and an EL layer between the pair of electrodes. The EL layer includes a substance including a carbazole skeleton. The substance is bonded to a substituted or unsubstituted first arylene group through a nitrogen atom included in the carbazole skeleton. The first arylene group is bonded to a substituted or unsubstituted benzofuropyridyl group or a substituted or unsubstituted benzothienopyridyl group. The first arylene group includes 1 to 5 substituted or unsubstituted second arylene groups which are bonded to one another. The EL layer may further include a layer including an emission center substance, specifically an iridium compound.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 17, 2016
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Hirose, Harue OSAKA, Takeyoshi WATABE, Satomi MITSUMORI, Yuko KUBOTA, Satoshi SEO
  • Patent number: 9496505
    Abstract: A composite material including an organic compound and an inorganic compound and having a high carrier-transport property is provided. A composite material having a high carrier-injection property to an organic compound is provided. A composite material in which light absorption due to charge transfer interaction is unlikely to occur is provided. A light-emitting element having high emission efficiency is provided by including the composite material. A light-emitting element having a low drive voltage is provided. A light-emitting element having a long lifetime is provided. A composite material including a heterocyclic compound having a dibenzothiophene skeleton or a dibenzofuran skeleton and an inorganic compound exhibiting an electron-accepting property with respect to the heterocyclic compound is provided.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 15, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Harue Osaka, Takako Takasu
  • Patent number: 9478749
    Abstract: An organic compound having a high T1 level is provided. An element emitting phosphorescence in the blue and green regions is provided. An organic compound having a high glass-transition temperature is provided. A light-emitting element, a light-emitting device, an electronic appliance, or a lighting device having high heat resistance is provided. A light-emitting element includes at least a hole-transport layer, a light-emitting layer, and an electron-transport layer between an anode and a cathode. An anthracene compound represented by General Formula (G1) is contained in at least one of the hole-transport layer, the light-emitting layer, and the electron-transport layer.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: October 25, 2016
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Masato Suzuki, Nobuharu Ohsawa, Satoko Shitagaki, Harue Osaka
  • Publication number: 20160308136
    Abstract: A composite material which includes an organic compound and an inorganic compound and has a high carrier-transport property is provided. A composite material having a good property of carrier injection into an organic compound is provided. A composite material in which light absorption due to charge-transfer interaction is unlikely to occur is provided. A composite material having a high visible-light-transmitting property is provided. A composite material including a hydrocarbon compound and an inorganic compound exhibiting an electron-accepting property with respect to the hydrocarbon compound is provided. The hydrocarbon compound has a substituent bonded to a naphthalene skeleton, a phenanthrene skeleton, or a triphenylene skeleton and has a molecular weight of 350 to 2000, and the substituent has one or more rings selected from a benzene ring, a naphthalene ring, a phenanthrene ring, and a triphenylene ring.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 20, 2016
    Inventors: Kaori OGITA, Hiromi NOWATARI, Harue OSAKA, Takahiro USHIKUBO, Satoshi SEO, Takako TAKASU
  • Patent number: 9444063
    Abstract: To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 13, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yusuke Nonaka, Satoshi Seo, Harue Osaka, Tsunenori Suzuki, Takeyoshi Watabe
  • Patent number: 9419239
    Abstract: A composite material including an organic compound and an inorganic compound, which has a high carrier-transport property; a composite material having an excellent property of carrier injection to an organic compound; a composite material in which light absorption due to charge transfer interaction is unlikely to occur; and a composite material having a high visible-light-transmitting property are provided. A composite material which includes an organic compound and an inorganic compound exhibiting an electron-accepting property with respect to the organic compound, in which the rings of the organic compound are all benzene rings and the number of the benzene rings of the organic compound is greater than or equal to 4 and less than or equal to 25, is provided.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: August 16, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiromi Seo, Harue Osaka, Satoshi Seo, Masato Suzuki, Nobuharu Ohsawa
  • Patent number: 9406893
    Abstract: A substance having a hole-transport property and a wide band gap is provided. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, ?1 and ?2 separately represent a substituted or unsubstituted arylene group having 6 to 13 carbon atoms; n and k separately represent 0 or 1; Q1 and Q2 separately represent sulfur or oxygen; and R1 to R22 separately represent hydrogen, an alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 14 carbon atoms.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: August 2, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Takako Takasu, Nobuharu Ohsawa, Hiromi Nowatari, Satoshi Seo
  • Publication number: 20160197299
    Abstract: Provided is a light-emitting element in which an adverse effect by halides in an EL layer is suppressed and which can be provided with low cost. The light-emitting element including at least two layers between an anode and a light-emitting layer. One of the two layers which is closer to the anode has higher concentration of halides and halogen elements than the other layer closer to the light-emitting layer.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tsunenori Suzuki, Nozomi KOMATSU, Harue OSAKA, Hiromi SEO, Satoshi SEO