Patents by Inventor Haruhiko Ishikawa

Haruhiko Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210095517
    Abstract: A work in progress includes: a pair of glass substrates arranged to face each other; a peripheral wall having a frame shape and disposed between the pair of glass substrates; a boundary wall; and an evacuation port. The boundary wall hermetically separates an internal space, surrounded with the pair of glass substrates and the peripheral wall, into an evacuation space, a buffer space, and a ventilation space. The evacuation port connects the ventilation space to an external environment. The evacuation space and the buffer space have a lower internal pressure than the ventilation space. A predetermined part, including the evacuation space but excluding parts covering the buffer space and the ventilation space, of the work in progress, forms the glass panel unit.
    Type: Application
    Filed: March 22, 2019
    Publication date: April 1, 2021
    Inventors: Eiichi URIU, Tasuku ISHIBASHI, Kazuya HASEGAWA, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 10941068
    Abstract: A glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate and a second substrate with a first sealant to create an inner space. The pressure reducing step includes producing a reduced pressure in the inner space through an exhaust port that the first substrate has. The sealing step includes irradiating a second sealant, inserted into the exhaust port, with an infrared ray through a region, where a low emissivity film is nonexistent, of the second substrate.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: March 9, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masataka Nonaka, Eiichi Uriu, Takeshi Shimizu, Haruhiko Ishikawa, Kazuya Hasegawa, Tasuku Ishibashi, Hiroyuki Abe
  • Publication number: 20210017074
    Abstract: A sealing head includes a frame, an intake unit, a pressing pin, and a non-contact heater. The frame is configured to be detachably attached to a work in progress of a glass panel unit. The intake unit, the pressing pin, and the non-contact heater are supported by the frame. The work in progress includes a first substrate, a second substrate, a bonding part, and an internal space. The first substrate has an evacuation port. The bonding part bonds the first substrate and the second substrate together. The internal space is formed by being surrounded by the first substrate, the second substrate, and the bonding part. The internal space is communicated with the evacuation port. The pressing pin is configured to press, toward the second substrate, a sealing material which is heat fusible and which is inserted into the evacuation port. The non-contact heater is configured to locally heat the sealing material in a non-contact manner via the second substrate.
    Type: Application
    Filed: February 28, 2019
    Publication date: January 21, 2021
    Inventors: Haruhiko ISHIKAWA, Takeshi SHIMIZU, Masataka NONAKA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20210017805
    Abstract: A glass panel unit having an exhaust pipe not protruding from the glass panel unit and an evacuation port tightly sealed, a glass window. A glass panel unit includes a first panel, a second panel, a seal member having a frame shape, a pore sealing material, and a bonding portion. The seal member hermetically bonds a peripheral portion of the first panel and a peripheral portion of the second panel together such that a hermetically sealed space in an evacuated state is formed between the first panel and the second panel. The pore sealing material hermetically seals an evacuation port formed in one of the first panel and the second panel. The bonding portion is bonded to the first panel and the second panel at part of a peripheral portion of the evacuation port and to suppress the first panel and the second panel from separating from each other.
    Type: Application
    Filed: March 13, 2019
    Publication date: January 21, 2021
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20210010319
    Abstract: A glass panel unit assembly includes a pair of glass substrates arranged to face each other, a peripheral wall, a partition, an air passage, and an evacuation port. The peripheral wall has a frame shape and is provided between the pair of glass substrates. The partition partitions an internal space, surrounded with the pair of glass substrates and the peripheral wall, into a first space and a second space. The air passage connects the first space and the second space together. The evacuation port connects the second space to an external environment. The partition has a broader width than the peripheral wall.
    Type: Application
    Filed: March 7, 2019
    Publication date: January 14, 2021
    Inventors: Tasuku ISHIBASHI, Eiichi URIU, Kazuya HASEGAWA, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210009471
    Abstract: A method for manufacturing a glass panel unit, which reduces the amount of a getter material to enable a gettering ability to be realized at a relatively low temperature less likely to cause damage. The method includes a step of producing a getter material by heating an unprocessed getter material at a temperature higher than a prescribed temperature Te; a step of producing a preassembled component including a first and second glass pane, a heat-fusible sealing material, an internal space, and a gas adsorbent containing the getter material, and an evacuation port; a step of forming a frame body hermetically bonding the first glass pane and the second glass pane together by melting the heat-fusible sealing material with heat; and a step of heating the gas adsorbent at the prescribed temperature Te while the internal space is evacuated by exhausting air in the internal space through the evacuation port.
    Type: Application
    Filed: March 15, 2019
    Publication date: January 14, 2021
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210002949
    Abstract: A glass panel unit assembly includes: glass substrates; a peripheral wall having a frame shape and disposed between the glass substrates; a partition; an evacuation port; and a plurality of air passages. The partition partitions an internal space into an evacuation space, a ventilation space, and a coupling space. The evacuation port connects the ventilation space to an external environment. The plurality of air passages includes: a first air passage connecting the evacuation space to the coupling space; and a second air passage connecting the coupling space to the ventilation space. The second air passage includes a particular air passage having a larger dimension than any of the first air passage.
    Type: Application
    Filed: March 8, 2019
    Publication date: January 7, 2021
    Inventors: Tasuku ISHIBASHI, Eiichi URIU, Kazuya HASEGAWA, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 10858279
    Abstract: A glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate and a second substrate with a first sealant to create an inner space. The pressure reducing step includes producing a reduced pressure in the inner space through an exhaust port that the first substrate has. The sealing step includes melting a second sealant inserted into the exhaust port by locally heating the second sealant, and deforming the second sealant by pressing the second sealant toward the second substrate, to seal the exhaust port up with the second sealant melted and deformed.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: December 8, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi Shimizu, Tasuku Ishibashi, Eiichi Uriu, Kazuya Hasegawa, Masataka Nonaka, Hiroyuki Abe, Haruhiko Ishikawa
  • Publication number: 20200361110
    Abstract: A glass panel unit manufacturing method includes a punching step and a pillar mounting step. In the punching step, a punch punches at least one of a plurality of portions from a base material of a sheet to form at least one pillar. Each of the plurality of portions is surrounded by a corresponding one of a plurality of loop-shaped grooves in the base material. In the pillar mounting step, the at least one pillar is mounted on a surface of a first substrate including a glass pane.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Inventors: Takeshi SHIMIZU, Hiroyuki ABE, Masataka NONAKA, Kazuya HASEGAWA, Eiichi URIU, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Hiroshi TAKAHASHI, Shinobu WATANABE
  • Publication number: 20200362619
    Abstract: A glass panel unit includes a first glass panel, a second glass panel, a third glass panel, a first evacuated space, a second evacuated space, and a gas adsorbent. The third glass panel is arranged between the first glass panel and the second glass panel. The first evacuated space is created between the first glass panel and the third glass panel. The second evacuated space is created between the second glass panel and the third glass panel. The gas adsorbent is arranged, when viewed perpendicularly to a direction in which the first glass panel, the third glass panel, and the second glass panel are laid one on top of another, between two surfaces. One of the two surfaces is a surface, facing the third glass panel, of the first glass panel. The other of the two surfaces is a surface, facing the third glass panel, of the second glass panel.
    Type: Application
    Filed: March 15, 2019
    Publication date: November 19, 2020
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20200300030
    Abstract: A glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate and a second substrate with a first sealant to create an inner space. The pressure reducing step includes producing a reduced pressure in the inner space through an exhaust port that the first substrate has. The sealing step includes irradiating a second sealant, inserted into the exhaust port, with an infrared ray through a region, where a low emissivity film is nonexistent, of the second substrate.
    Type: Application
    Filed: March 27, 2017
    Publication date: September 24, 2020
    Inventors: Masataka NONAKA, Eiichi URIU, Takeshi SHIMIZU, Haruhiko ISHIKAWA, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Patent number: 10766160
    Abstract: A glass panel unit manufacturing method includes a punching step and a pillar mounting step. In the punching step, a punch punches at least one of a plurality of portions from a base material of a sheet to form at least one pillar. Each of the plurality of portions is surrounded by a corresponding one of a plurality of loop-shaped grooves in the base material. In the pillar mounting step, the at least one pillar is mounted on a surface of a first substrate including a glass pane.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: September 8, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi Shimizu, Hiroyuki Abe, Masataka Nonaka, Kazuya Hasegawa, Eiichi Uriu, Haruhiko Ishikawa, Tasuku Ishibashi, Hiroshi Takahashi, Shinobu Watanabe
  • Publication number: 20200181013
    Abstract: The method for manufacturing the gas adsorption unit includes a preparation step, an activation step, and a sealing step. The preparation step is a step of wrapping a getter with a package material. The activation step is a step of heating the getter wrapped with the package material to activate the getter. The sealing step is a step of melting the package material by heating the package material so as to seal, with the package material, the getter activated in the activation step.
    Type: Application
    Filed: June 19, 2018
    Publication date: June 11, 2020
    Inventors: Tasuku ISHIBASHI, Eiichi URIU, Kazuya HASEGAWA, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20200157876
    Abstract: A first substrate, having an evacuation port, and a second substrate are bonded together with a first sealing material in a frame shape interposed between them to create an internal space. The internal space is evacuated through the evacuation port, and the evacuation port is sealed up with the internal space kept evacuated. At this time, a second sealing material inserted into the evacuation port is heated and melted while being pressed toward the second substrate such that the evacuation port is sealed up with the second sealing material melted. The evacuation port and the second sealing material have dissimilar shapes when viewed along the center axis of the evacuation port in a state where the second sealing material has been inserted into the evacuation port but has not melted yet.
    Type: Application
    Filed: May 25, 2018
    Publication date: May 21, 2020
    Inventors: Takeshi SHIMIZU, Kazuya HASEGAWA, Masataka NONAKA, Hiroyuki ABE, Eiichi URIU, Haruhiko ISHIKAWA, Tasuku ISHIBASHI
  • Publication number: 20200131841
    Abstract: A glass panel unit includes a first panel, a second panel, a sealing portion in a frame shape, a plurality of pillars, and a gas adsorbent. The sealing portion in the frame shape hermetically bonds respective peripheral edges of the first panel and the second panel together so as to create an evacuated, hermetically sealed space between the first panel and the second panel. The plurality of pillars and the gas adsorbent are arranged in the hermetically sealed space. The gas adsorbent contains: a non-metallic getter material having a porous structure with the ability to adsorb gas molecules; and a metallic getter material having a metallic surface with the ability to adsorb gas molecules.
    Type: Application
    Filed: June 26, 2018
    Publication date: April 30, 2020
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20200087200
    Abstract: A pillar mounting method includes an accommodation step, a mounting step, and a displacement step. The accommodation step is a step of accommodating a plurality of pillars in storage with the plurality of pillars being stacked on each other. The mounting step is a step of pushing one pillar of the plurality of pillars accommodated in the storage out of the storage and mounting the one pillar on a substrate including a glass pane. The displacement step is a step of changing a relative location between the substrate and the storage. The mounting step and the displacement step are alternately repeated to mount the plurality of pillars in a predetermined arrangement on the substrate such that the plurality of pillars are apart from each other.
    Type: Application
    Filed: May 16, 2018
    Publication date: March 19, 2020
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20200024891
    Abstract: A method for manufacturing a pillar supply sheet is a method for manufacturing a pillar supply sheet including a plurality of pillars, a carrier sheet, and an adhesion layer between each of the pillars and the carrier sheet, the method including a pillar forming step. The pillar forming step is a step of forming the plurality of pillars by subjecting the base member to an etching process or a laser irradiation process and removing an unnecessary portion from the base member after the process.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 23, 2020
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Masataka NONAKA, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Takeshi SHIMIZU
  • Publication number: 20190270215
    Abstract: A glass panel unit manufacturing method includes a punching step and a pillar mounting step. In the punching step, a punch punches at least one of a plurality of portions from a base material of a sheet to form at least one pillar. Each of the plurality of portions is surrounded by a corresponding one of a plurality of loop-shaped grooves in the base material. In the pillar mounting step, the at least one pillar is mounted on a surface of a first substrate including a glass pane.
    Type: Application
    Filed: November 10, 2017
    Publication date: September 5, 2019
    Inventors: Takeshi SHIMIZU, Hiroyuki ABE, Masataka NONAKA, Kazuya HASEGAWA, Eiichi URIU, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Hiroshi TAKAHASHI, Shinobu WATANABE
  • Publication number: 20190119142
    Abstract: A glass panel unit having an inner space at a reduced pressure and a building component including such a glass panel unit are provided such that no traces of an exhaust pipe are left on their outer surface. To achieve this, a glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate (10) and a second substrate (20) with a first sealant (410) to create an inner space (510). The pressure reducing step includes producing a reduced pressure in the inner space (510) through an exhaust port (50) that the first substrate (10) has. The sealing step includes melting a second sealant (420) inserted into the exhaust port (50) by locally heating the second sealant (420), and deforming the second sealant (420) by pressing the second sealant (420) toward the second substrate (20), to seal the exhaust port (50) up with the second sealant (420) melted and deformed.
    Type: Application
    Filed: March 23, 2017
    Publication date: April 25, 2019
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi SHIMIZU, Tasuku ISHIBASHI, Eiichi URIU, Kazuya HASEGAWA, Masataka NONAKA, Hiroyuki ABE, Haruhiko ISHIKAWA
  • Publication number: 20190084878
    Abstract: A glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate including a wired glass pane and a second substrate including a non-wired glass pane with a first sealant in a frame shape to create an inner space. The pressure reducing step includes producing a reduced pressure in the inner space through an exhaust port that the first substrate has. The sealing step includes irradiating the second sealant with an infrared ray externally incident through the second substrate to seal the exhaust port up with the second sealant that has melted.
    Type: Application
    Filed: March 27, 2017
    Publication date: March 21, 2019
    Inventors: Masataka NONAKA, Eiichi URIU, Takeshi SHIMIZU, Haruhiko ISHIKAWA, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE