Patents by Inventor Haruo Aoyama

Haruo Aoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7179417
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least, and further containing 0.0015 to 0.1 wt % magnesium, said magnesium content being effective quantity for forming a protective magnesium oxide film on the solder surface and also for destroying said oxide film during soldering. When solder paste is preserved, the inside of solder particle is protected by the protective magnesium oxide film formed on the surface of solder particle, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at elevated temperature during soldering, a state where said protective oxide film is easily destroyed is obtained, so that good wettability is held.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 20, 2007
    Assignee: Nippon Metal Industry Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Patent number: 7175805
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least, and further containing 0.0015 to 0.1 wt % magnesium, said magnesium content being effective quantity for forming a protective magnesium oxide film on the solder surface and also for destroying said oxide film during soldering. When solder paste is preserved, the inside of solder particle is protected by the protective magnesium oxide film formed on the surface of solder particle, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at elevated temperature during soldering, a state where said protective oxide film is easily destroyed is obtained, so that good wettability is held.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: February 13, 2007
    Assignee: Nippon Metal Industry Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Patent number: 7175804
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least and further containing 0.0015 to 0.03 wt % magnesium and 0.0010 to 0.006 wt % aluminum. Upon preservation of solder paste not only under refrigeration but also at a room temperature or higher, the inside of solder particle is protected by the protective magnesium/aluminum oxide film formed on the solder particle surface, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at the elevated temperature during soldering, the solder alloy enters a state where said protective oxide film is easily destroyed, so that good wettability is held.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: February 13, 2007
    Assignee: Nippon Metal Industry Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Publication number: 20060210420
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least, and further containing 0.0015 to 0.1 wt % magnesium, said magnesium content being effective quantity for forming a protective magnesium oxide film on the solder surface and also for destroying said oxide film during soldering. When solder paste is preserved, the inside of solder particle is protected by the protective magnesium oxide film formed on the surface of solder particle, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at elevated temperature during soldering, a state where said protective oxide film is easily destroyed is obtained, so that good wettability is held.
    Type: Application
    Filed: May 17, 2006
    Publication date: September 21, 2006
    Applicant: Nippon Metal Industry Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Publication number: 20060204397
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least and further containing 0.0015 to 0.03 wt % magnesium and 0.0010 to 0.006 wt % aluminum. Upon preservation of solder paste not only under refrigeration but also at a room temperature or higher, the inside of solder particle is protected by the protective magnesium/aluminum oxide film formed on the solder particle surface, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at the elevated temperature during soldering, the solder alloy enters a state where said protective oxide film is easily destroyed, so that good wettability is held.
    Type: Application
    Filed: May 12, 2006
    Publication date: September 14, 2006
    Applicant: Nippon Metal Industry Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Patent number: 7070736
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least and further containing 0.0015 to 0.03 wt % magnesium and 0.0010 to 0.006 wt % aluminum. Upon preservation of solder paste not only under refrigeration but also at a room temperature or higher, the inside of solder particle is protected by the protective magnesium/aluminum oxide film formed on the solder particle surface, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at the elevated temperature during soldering, the solder alloy enters a state where said protective oxide film is easily destroyed, so that good wettability is held.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: July 4, 2006
    Assignee: Nippon Metal Industry, Co., Ltd.
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Publication number: 20040156741
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt % zinc at least, and further containing 0.0015 to 0.1 wt % magnesium, said magnesium content being effective quantity for forming a protective magnesium oxide film on the solder surface and also for destroying said oxide film during soldering. When solder paste is preserved, the inside of solder particle is protected by the protective magnesium oxide film formed on the surface of solder particle, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at elevated temperature during soldering, a state where said protective oxide film is easily destroyed is obtained, so that good wettability is held.
    Type: Application
    Filed: August 19, 2003
    Publication date: August 12, 2004
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka
  • Publication number: 20040156740
    Abstract: An Sn—Zn lead-free solder alloy according to the present invention is constructed in a manner such that it is an Sn-based solder alloy indispensably containing 6 to 10 wt% zinc at least and further containing 0.0015 to 0.03 wt% magnesium and 0.0010 to 0.006 wt% aluminum. Upon preservation of solder paste not only under refrigeration but also at a room temperature or higher, the inside of solder particle is protected by the protective magnesium/aluminum oxide film formed on the solder particle surface, and a reaction between zinc and an activator is suppressed, so that preservation stability is improved, and at the elevated temperature during soldering, the solder alloy enters a state where said protective oxide film is easily destroyed, so that good wettability is held.
    Type: Application
    Filed: August 19, 2003
    Publication date: August 12, 2004
    Inventors: Masaaki Yoshikawa, Haruo Aoyama, Hirotaka Tanaka