Patents by Inventor Haruyuki Nishijima

Haruyuki Nishijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10018386
    Abstract: A swirl space forming member that forms a swirl space in which a refrigerant flowing into a nozzle portion of an ejector swirls around an axis of the nozzle portion. In this way, even when the refrigerant flowing out of a first evaporator is a gas-phase refrigerant, pressure of the refrigerant on a swirling center axis side in the swirl space is reduced to be able to start condensation by swirling the refrigerant, and a gas-liquid two-phase refrigerant in which a condensation nucleus is generated can flow into the nozzle portion. Thus, occurrence of a condensation delay in the refrigerant in the nozzle portion can be restricted.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: July 10, 2018
    Assignee: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Kenta Kayano, Yoshiaki Takano
  • Patent number: 9989074
    Abstract: A mixing portion that is formed in an area from a refrigerant injection port of a nozzle portion to an inlet section of a diffuser portion in an internal space of a body portion of an ejector, that mixes an injection refrigerant injected from the refrigerant injection port and a suction refrigerant suctioned from a refrigerant suction port is provided. A distance from the refrigerant injection port to the inlet section in the mixing portion is determined such that a flow velocity of the refrigerant flowing into the inlet section of the diffuser portion becomes lower than or equal to a two-phase sound velocity. A shock wave that is generated at a time that a mixed refrigerant is shifted from a supersonic velocity state to a subsonic velocity state is generated in the mixing portion.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: June 5, 2018
    Assignee: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Kenta Kayano, Yoshiaki Takano
  • Publication number: 20180080482
    Abstract: An ejector includes a nozzle, a body including a refrigerant suction port and a pressure increasing portion, a passage forming member inserted into the nozzle, and an actuation device moving the passage forming member. A nozzle passage includes a smallest passage cross-sectional area portion, a convergent portion, and a divergent portion. The passage forming member includes a tip portion which changes the passage cross-sectional area at the smallest passage cross-sectional area portion when the actuation device moves the passage forming member. A positive displacement amount is defined as an amount of a displacement of the passage forming member when the passage forming member is moved so as to increase the passage cross-sectional area at the smallest passage cross-sectional area portion. The tip portion has a shape in which an increase rate of the smallest passage cross-sectional area portion is increased according to an increase of the positive displacement amount.
    Type: Application
    Filed: February 26, 2016
    Publication date: March 22, 2018
    Inventors: Yoshiyuki YOKOYAMA, Haruyuki NISHIJIMA, Yoshiaki TAKANO
  • Publication number: 20180058738
    Abstract: An ejector includes a nozzle, a swirl flow generation portion, a body including a refrigerant suction port and a diffuser portion, a passage forming member, and an actuation device moving the passage forming member. A nozzle passage is defined between the nozzle and the passage forming member. A smallest passage cross-sectional area portion is provided in the nozzle passage. A swirl space that has a shape of a revolution and is coaxial with the nozzle, and a refrigerant inflow passage through which the refrigerant flows into the swirl space are defined in the swirl flow generation portion. The ejector further includes an area adjustment device that changes the passage cross-sectional area of the refrigerant inflow passage. According to this, an efficiency of energy conversion in the nozzle passage can be improved.
    Type: Application
    Filed: February 26, 2016
    Publication date: March 1, 2018
    Inventors: Yoshiyuki YOKOYAMA, Haruyuki NISHIJIMA, Yoshiaki TAKANO
  • Patent number: 9897354
    Abstract: In an ejector, a passage formation member is disposed inside a body forming a space therein. Provided between an inner peripheral surface of the body and the passage formation member are a nozzle passage functioning as a nozzle, a mixing passage in which an ejection refrigerant ejected from the nozzle passage and a suction refrigerant drawn through a suction passage are mixed together, and a diffuser passage that converts a kinetic energy of the refrigerant that has flowed out of the mixing passage into a pressure energy. The mixing passage has a shape gradually reducing in cross-sectional area toward a downstream side in the refrigerant flow.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: February 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Yoshiyuki Yokoyama, Etsuhisa Yamada, Haruyuki Nishijima
  • Publication number: 20180045225
    Abstract: An ejector has a nozzle, a body, a passage defining member and a drive portion. The body has a refrigerant suction port and a pressure increasing portion. A nozzle passage is defined between an inner surface of the nozzle and an outer surface of the passage defining member and has a minimum sectional area portion, a tapered portion, and an expansion portion. The minimum sectional area portion has a smallest passage sectional area. The tapered portion is located upstream of the minimum sectional area portion in a refrigerant flow direction and has a passage sectional area decreasing toward the minimum sectional area portion gradually. The expansion portion is located downstream of the minimum sectional area portion in the refrigerant flow direction and has a passage sectional area increasing gradually. The passage defining member has a groove that is recessed to increase the passage sectional area of the nozzle passage.
    Type: Application
    Filed: March 2, 2016
    Publication date: February 15, 2018
    Inventors: Yoshiyuki YOKOYAMA, Haruyuki NISHIJIMA, Etsuhisa YAMADA, Ryota NAKASHIMA, Yoshiaki TAKANO, Kazunori MIZUTORI, Yorito KOHARA, Hiroshi SHINTANI
  • Patent number: 9879887
    Abstract: An ejector has a swirling space, a pressure reducing space, a suction passage, a pressure increasing space, a nozzle passage, a diffuser passage, a passage forming member that forms the nozzle passage and the diffuser passage, and a vibration suppressing portion that suppresses a vibration of the passage forming member. The vibration suppressing portion has (i) a first elastic member that applies a load to the passage forming member in a direction in which an area of a cross section perpendicular to the direction of the central axis of the nozzle passage and the diffuser passage decreases and (ii) a second elastic member that applies a load to the passage forming member in a direction opposite from the direction in which the first elastic member applies the load to the passage forming member.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: January 30, 2018
    Assignee: DENSO CORPORATION
    Inventors: Toru Takahashi, Eitaro Tanaka, Satoshi Inoue, Masatoshi Kuroyanagi, Yoichiro Kawamoto, Etsuhisa Yamada, Haruyuki Nishijima
  • Publication number: 20180023847
    Abstract: An ejector refrigeration cycle has a compressor, a radiator, an ejector, a swirl flow generator, an evaporator, and an oil separator. The compressor compresses refrigerant, mixed with refrigerant oil compatible with a liquid-phase refrigerant, and discharges the high-pressure refrigerant. The ejector has a nozzle and a body having a refrigerant suction port and a pressure increasing part. The swirl flow generator is configured to cause a decompression boiling in the refrigerant by causing the refrigerant to swirl about a center axis of the nozzle. The oil separator separates the refrigerant oil from the high-pressure refrigerant compressed by the compressor and guides the refrigerant oil to flow to a suction side of the compressor. The oil separator decreases a concentration of the refrigerant oil in the refrigerant, which is to flow into the swirl flow generator, so as to promote the decompression boiling of the refrigerant in the swirl flow generator.
    Type: Application
    Filed: March 4, 2016
    Publication date: January 25, 2018
    Inventors: Youhei NAGANO, Haruyuki NISHIJIMA, Yoshiyuki YOKOYAMA
  • Patent number: 9857102
    Abstract: An ejector includes a swirl flow channel that is arranged on an upstream side of a nozzle portion. The swirl flow channel swirls the high pressure refrigerant and allows the refrigerant in a state of a gas-liquid mixed phase to flow into the nozzle portion. The ejector further includes a flow-rate changeable mechanism that is disposed at the upstream side of the swirl flow channel, and is capable of changing a flow rate of the high pressure refrigerant that flows into the swirl flow channel. Accordingly, a nozzle efficiency can be improved, and an operation according to a load of the refrigeration cycle is possible.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 2, 2018
    Assignee: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
  • Patent number: 9816738
    Abstract: An approximately conical passage-forming member is disposed inside a body in which a swirling space for swirling a refrigerant is formed, and an ejector defines therein a nozzle passage that functions as a nozzle for depressurizing a refrigerant that has flowed out from the swirling space between an inner circumferential surface of the body and the passage-forming member, and a diffuser passage that pressurizes a mixed refrigerant obtained from a refrigerant sprayed from the nozzle passage and a refrigerant drawn from a suction-passage. A plurality of driving passages through which a refrigerant is introduced from a distribution space to the swirling space are formed in the body. In this case, the driving passages are formed in a manner such that a refrigerant flowing in from each driving passage into the swirling space flows along an outer circumference of the swirling space and flows in directions different from each other. Accordingly, nozzle efficiency is sufficiently improved.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: November 14, 2017
    Assignee: DENSO CORPORATION
    Inventors: Ryota Nakashima, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
  • Publication number: 20170307259
    Abstract: When intended to increase a refrigerant discharge capacity of a compressor in an ejector refrigeration cycle device at start-up of the compressor, the refrigerant discharge capacity is increased in such a manner that an increase amount in the refrigerant discharge capacity of the compressor per predetermined time period is lower than a maximum capacity increase amount per predetermined time period enabled by the compressor. Thus, even if a gas-liquid two-phase refrigerant flows into a refrigerant inflow passage forming a swirling-flow generating portion, the flow velocity of the gas-liquid two-phase refrigerant is prevented from becoming high, so that it can reduce friction noise that would be caused when the gas-liquid two-phase refrigerant circulates through the refrigerant inflow passage, further suppressing the generation of noise from the ejector.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 26, 2017
    Inventors: Yoshinori ARAKI, Toshiyuki TASHIRO, Masahiro YAMADA, Makoto KUME, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA
  • Publication number: 20170299227
    Abstract: An ejector-type refrigeration cycle has a compressor, an ejector module, a discharge capacity control section, and a pressure difference determining section. The ejector module has a body providing a gas-liquid separating space. The pressure difference determining section determines whether a low pressure difference operating condition is met. The low pressure difference operating condition is an operating condition in which a pressure difference obtained by subtracting a low-pressure side refrigerant pressure from a high-pressure side refrigerant pressure a predetermined reference pressure difference or lower. The body is provided with an oil return passage that guides a part of a liquid-phase refrigerant to flow from the gas-liquid separating space to a suction side of the compressor. The discharge capacity control section sets a refrigerant discharge capacity to be a predetermined reference discharge capacity or higher when the low pressure difference operating condition is determined to be met.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 19, 2017
    Applicant: DENSO CORPORATION
    Inventors: Makoto KUME, Masahiro YAMADA, Toshiyuki TASHIRO, Yoshinori ARAKI, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA
  • Publication number: 20170297416
    Abstract: An ejector refrigeration cycle device includes: a radiator that dissipates heat from a refrigerant discharged from a compressor; an ejector module that decompresses the refrigerant cooled by the radiator; and an evaporator that evaporates a liquid-phase refrigerant separated in a gas-liquid separation space of the ejector module. A grille shutter is disposed as an inflow-pressure increasing portion between the radiator and a cooling fan blowing the outside air toward the radiator. The grille shutter is operated to decrease the volume of the outside air to be blown toward the radiator when an outside air temperature is equal to or lower than a reference outside air temperature, thereby increasing the pressure of the inflow refrigerant to flow into a nozzle passage of the ejector module.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 19, 2017
    Applicant: DENSO CORPORATION
    Inventors: Toshiyuki TASHIRO, Masahiro YAMADA, Makoto KUME, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA, Yoshinori ARAKI
  • Patent number: 9784487
    Abstract: A body part of a decompression device has a swirl space for swirling a refrigerant that flows from a refrigerant inlet, and a refrigerant outlet that is positioned on an extension line of a swirl center line of the refrigerant and functions as a throttle. Further, a passage cross-sectional area of the refrigerant inlet is configured to be smaller than a twelve-fold value of a passage cross-sectional size of the refrigerant outlet, such that a swirl speed of the refrigerant in the swirl space is increased so as to enable a decompression boiling of the refrigerant around the swirl center line. In such manner, a gas-liquid mixture phase refrigerant securely flows into the refrigerant outlet, and it restricts a fluctuation of a flow amount of the refrigerant flowing toward a downstream side without complicating a cycle structure.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: October 10, 2017
    Assignee: DENSO CORPORATION
    Inventors: Tatsuhiro Suzuki, Etsuhisa Yamada, Haruyuki Nishijima
  • Patent number: 9771954
    Abstract: A mixing portion that mixes an injection refrigerant and a suction refrigerant is formed in a range of an internal space of a heating-side body portion of a heating-side ejector from a refrigerant injection port of a heating-side nozzle portion to an inlet of a heating-side diffuser. Further, the mixing portion is formed in a shape that gradually decreases a refrigerant passage area toward a downstream side of a refrigerant flow, and a refrigerant passage area of the inlet of the heating-side diffuser is set smaller than that of the refrigerant injection port. Thus, the flow velocity of the mixed refrigerant is decelerated to a value lower than a two phase sound velocity within the mixing portion, thereby suppressing occurrence of shock wave in the heating-side diffuser and stabilizing the pressure increasing performance in the heating-side diffuser.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 26, 2017
    Assignee: DENSO CORPORATION
    Inventors: Ryoko Awa, Haruyuki Nishijima, Yoshiaki Takano, Etsuhisa Yamada, Satoshi Itoh, Kenta Kayano
  • Publication number: 20170253106
    Abstract: A refrigerant that has flowed out of a liquid ejector radiates heat in a radiator, and a liquid-phase refrigerant that has radiated heat in the radiator flows into an ejection refrigerant passage of the liquid ejector. A discharged refrigerant of a compressor that suctions the refrigerant that has flowed out of a low-pressure evaporator flows into an inflow refrigerant passage of the liquid ejector. An ejector adopted as the liquid ejector is one in which an ejection refrigerant is ejected from the ejection refrigerant passage to a gas-liquid mixing portion, and the ejection refrigerant is ejected on an outer circumferential side of the inflow refrigerant flowing from the inflow refrigerant passage into the gas-liquid mixing portion.
    Type: Application
    Filed: September 1, 2015
    Publication date: September 7, 2017
    Applicant: DENSO CORPORATION
    Inventors: Haruyuki NISHIJIMA, Gouta OGATA, Yoshiaki TAKANO
  • Publication number: 20170232821
    Abstract: An ejector-type refrigeration cycle includes an ejector module integrated with a gas-liquid separation device. A length of an inlet pipe that connects a liquid-phase refrigerant outflow port of an ejector module to a refrigerant inflow port of an evaporator is shorter than a length of a suction pipe that connects a gas-phase refrigerant outflow port of the ejector module to a suction port of the compressor.
    Type: Application
    Filed: August 7, 2015
    Publication date: August 17, 2017
    Applicant: DENSO CORPORATION
    Inventors: Hiroshi KATAOKA, Shun KURATA, Isamu TAKASUGI, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA
  • Publication number: 20170232822
    Abstract: An ejector-type refrigeration cycle includes an ejector module integrated with a gas-liquid separation device. The ejector module is disposed outside an area that overlaps with an engine when viewed from a vehicular upper side. Further, the ejector module may be disposed outside an area overlapping with the engine when viewed from the vehicular front side, and the ejector module may be disposed outside of side members in a vehicle width direction.
    Type: Application
    Filed: August 7, 2015
    Publication date: August 17, 2017
    Inventors: Isamu TAKASUGI, Hiroshi KATAOKA, Haruyuki NISHIJIMA, Yoshiyuki YOKOYAMA, Youhei NAGANO
  • Publication number: 20170225543
    Abstract: An ejector-type refrigeration cycle includes an ejector module integrated with a gas-liquid separation device. A length of a suction pipe that connects a gas-phase refrigerant outflow port of the ejector module to a suction port of a compressor is set to be shorter than a length of an outlet pipe that connects a refrigerant outflow port of an evaporator to a refrigerant suction port of the ejector module. A pressure loss that occurs when a refrigerant flows in the suction pipe may be set to be lower than a pressure loss that occurs when the refrigerant flows in an outlet pipe.
    Type: Application
    Filed: August 7, 2015
    Publication date: August 10, 2017
    Inventors: Shun KURATA, Yoshiyuki YOKOYAMA, Youhei NAGANO, Haruyuki NISHIJIMA, Isamu TAKASUGI, Hiroshi KATAOKA
  • Patent number: 9726403
    Abstract: In an air cooling mode of cooling air as a fluid to be heat-exchanged, a refrigeration cycle device is provided to perform switching to a refrigerant circuit in which a high-pressure refrigerant exchanging heat with outside air in an exterior heat exchanger and dissipating heat therefrom flows into an accumulator serving as a gas-liquid separator. In an air heating mode of heating the air, the refrigeration cycle device also performs switching to another refrigerant circuit that allows a low-pressure refrigerant decompressed by a first expansion valve to flow into the accumulator. Thus, even in any operation mode, a difference between a refrigerant temperature in the accumulator and the outside air temperature is reduced to thereby suppress the degradation of performance of the refrigeration cycle device due to the unnecessary transfer of heat between the refrigerant in the accumulator and the outside air.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: August 8, 2017
    Assignee: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Yoshiaki Takano, Haruyuki Nishijima, Hiroshi Oshitani