Patents by Inventor Haruyuki Nishijima

Haruyuki Nishijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7347062
    Abstract: An ejector cycle with an ejector includes a nozzle for decompressing refrigerant. A receiver for storing refrigerant is disposed at a refrigerant outlet side of a condenser. A bypass passage and a switching valve for opening and closing the bypass passage are provided so that high-temperature refrigerant discharged from a compressor is introduced into an evaporator while bypassing the condenser in a defrosting operation. When the defrosting operation is set, the switching valve is opened while a fan for blowing cool air to the condenser is operated. A part of refrigerant discharged from the compressor flows into the evaporator to remove frost on a surface of the evaporator.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 25, 2008
    Assignee: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Toru Ikemoto, Hisatsugu Matsunaga, Takeharu Asaoka
  • Publication number: 20080041079
    Abstract: A refrigerant cycle device having an ejector includes a first evaporator for evaporating refrigerant flowing out of the ejector, a first passage portion for guiding refrigerant to a refrigerant suction port of the ejector, a throttle unit located in the first passage portion, a second evaporator located in the first passage portion downstream of the throttle unit, a bypass passage portion for guiding hot gas refrigerant from a compressor into the second evaporator, a bypass opening and closing unit provided in the bypass passage portion. Furthermore, a second passage portion is branched from the bypass passage portion downstream of the bypass opening and closing unit, and a flow control unit is provided in the second passage portion to prevent a flow of refrigerant from the first evaporator to the second evaporator through the second passage portion. Therefore, defrosting of both the first and second evaporators can be suitably performed.
    Type: Application
    Filed: June 21, 2007
    Publication date: February 21, 2008
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Etsuhisa Yamada, Hideya Matsui, Hirotsugu Takeuchi, Gentarou Oomura, Ryoko Fujiwara
  • Patent number: 7320229
    Abstract: A branch passage, which is branched at a point on an upstream side of an ejector, is connected to a refrigerant suction inlet of the ejector. An evaporator is arranged in the branch passage, and a capillary tube is arranged on an upstream side of the evaporator.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: January 22, 2008
    Assignee: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama
  • Publication number: 20080000263
    Abstract: A distributor able to evenly supply influent two-phase refrigerant flowing in by various flow states to different pipes with an extremely small pressure loss, that is, a distributor of a gas-liquid two-phase fluid distributing a gas-liquid two-phase fluid flowing in from an inlet pipe into a plurality of distribution pipes, provided with a cylindrical vessel with a cylindrical upper part, an inlet pipe connected in a tangential direction with respect to a circular cross section of the upper portion of the cylindrical vessel, and distribution pipes connected to a lower portion of the cylindrical vessel.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 3, 2008
    Applicant: DENSO Corporation
    Inventors: Gentarou Oomura, Haruyuki Nishijima, Etsuhisa Yamada, Hirotsugu Takeuchi, Hideya Matsui, Ryoko Fujiwara
  • Publication number: 20070163293
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 19, 2007
    Applicant: DENSO Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Publication number: 20070119207
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Application
    Filed: September 22, 2005
    Publication date: May 31, 2007
    Applicant: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Publication number: 20070039337
    Abstract: An ejector cycle device includes a compressor, a refrigerant radiator, an ejector having a nozzle part and a refrigerant suction port, and a branch passage for introducing refrigerant branched on an upstream side of the nozzle part of the ejector in a refrigerant flow into the refrigerant suction port. Furthermore, a first evaporator is arranged on a downstream side of the ejector in the refrigerant flow, and a second evaporator is arranged in the branch passage. In addition, in the ejector cycle device, a refrigerant flow rate ratio (?) of a flow rate of refrigerant flowing in the second evaporator to a flow rate of refrigerant discharged from the compressor is set within a range from 0.07 or more to 0.93 or less. In this case, COP of the ejector cycle device can be effectively improved.
    Type: Application
    Filed: August 9, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Etsuhisa Yamada, Makoto Ikegami, Hiroshi Oshitani
  • Publication number: 20070039349
    Abstract: A refrigerant cycle device includes a compressor for compressing refrigerant, a condenser for cooling and condensing high-pressure refrigerant discharged from the compressor, a vapor-liquid separator located at a refrigerant outlet side of the condenser for separating refrigerant from the condenser into vapor refrigerant and liquid refrigerant, a supercooling device for supercooling the liquid refrigerant from the vapor-liquid separator, an ejector having a nozzle part for decompressing refrigerant downstream from a refrigerant outlet side of the condenser and a refrigerant suction port for drawing refrigerant by a high-velocity flow of refrigerant jetted from the nozzle part, a throttle member which decompresses the liquid refrigerant supercooled by the supercooling device, an evaporator located at a downstream side of the throttle member and is connected to the refrigerant suction port of the ejector.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20070028646
    Abstract: A branch passage, which is branched at a point on an upstream side of an ejector, is connected to a refrigerant suction inlet of the ejector. An evaporator is arranged in the branch passage, and a capillary tube is arranged on an upstream side of the evaporator.
    Type: Application
    Filed: July 31, 2006
    Publication date: February 8, 2007
    Applicant: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama
  • Publication number: 20070028630
    Abstract: An ejector-type cycle with refrigeration ability improved by utilizing an evaporator efficiently is provided. An ejector-type cycle (50, 60), for exchanging heat using a refrigerant, comprises: a compressor (1) for compressing the refrigerant; a condenser (2) for condensing the compressed refrigerant, a first orifice (3) arranged downstream of the condenser; an ejector (6) arranged downstream of the first orifice and capable of exhibiting a sucking force at the inlet (64) thereof; a first evaporator (7) for exchanging heat with an external fluid by passing the refrigerant and having a refrigerant outlet connected to the inlet (64) of the ejector; a dryness degree adjusting mechanism (4) interposed between the first orifice and the ejector and connected to the ejector and the first evaporator so as to supply the refrigerant thereto, and a second orifice (5) arranged downstream of and connected to the dryness degree adjusting mechanism.
    Type: Application
    Filed: August 7, 2006
    Publication date: February 8, 2007
    Applicant: DENSO Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20060254308
    Abstract: In an ejector cycle device having an ejector, an evaporator is arranged in a refrigerant branch passage connected to a refrigerant suction port of the ejector, an opening/closing member for opening and closing a refrigerant passage is disposed to prevent refrigerant from flowing into the evaporator, and a control unit intermittently controls operation of the compressor. In the ejector cycle device, the control unit brings the opening/closing member into a closing state in a time period for which the operation of the compressor is stopped. Accordingly, it can restrict liquid refrigerant from collecting in the evaporator while the compressor is stopped.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 16, 2006
    Applicant: DENSO Corporation
    Inventors: Naoki Yokoyama, Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Takuo Maehara, Etsuhisa Yamada
  • Patent number: 7131292
    Abstract: A fluid in the state of two phase containing gas and liquid, which flows into the separating space, is revolved along an inner wall of the separating space and a liquid flow outlet is opened toward a revolving flow of the fluid and arranged in a lower portion of the separating space. The liquid-phase fluid which is a part of the revolving flow of the fluid flows out through the liquid flow outlet.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 7, 2006
    Assignee: DENSO Corporation
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Hirotsugu Takeuchi, Hisatsugu Matsunaga, Toru Ikemoto
  • Publication number: 20060156745
    Abstract: An ejector cycle device includes an ejector having a nozzle portion which decompresses refrigerant flowing out of a radiator, a first evaporator for evaporating refrigerant from the ejector, and a second evaporator provided in a branch passage that is branched from a position between the refrigerant radiator and the ejector and is connected to a refrigerant suction port of the ejector. Furthermore, a throttle member is disposed in the branch passage to decompress refrigerant and adjust a flow amount of refrigerant, and the second evaporator is disposed in the branch passage between the throttle member and the refrigerant suction port. In the ejector cycle device having both the first and second evaporators, a defrosting operation of one the first and second evaporators can be performed while the other one of the first and second evaporators is operated to have a cooling function.
    Type: Application
    Filed: January 19, 2006
    Publication date: July 20, 2006
    Applicant: DENSO Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Haruyuki Nishijima, Hiroshi Oshitani, Etsuhisa Yamada, Takuo Maehara
  • Patent number: 6978637
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, an insulation member is provided on an outer surface of the ejector to suppress a heat exchange with an external side. When a suction portion of the ejector is insulated by the insulation member, pressure loss in the suction portion can be reduced, a gas refrigerant ratio at an inlet port of the mixing portion can be reduced, and a liquid refrigerant amount to be supplied to the evaporator can be increased. In addition, when a mixing portion and a diffuser portion of the ejector are insulated, it can prevent liquid refrigerant from being excessively evaporated. As a result, it can effectively restrict heat loss due to a heat exchange in the ejector with the external side.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: December 27, 2005
    Assignee: Denso Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Makoto Ikegami, Hisatsugu Matsunaga
  • Publication number: 20050178149
    Abstract: A fluid in the state of two phase containing gas and liquid, which flows into the separating space, is revolved along an inner wall of the separating space and a liquid flow outlet is opened toward a revolving flow of the fluid and arranged in a lower portion of the separating space. The liquid-phase fluid which is a part of the revolving flow of the fluid flows out through the liquid flow outlet.
    Type: Application
    Filed: February 9, 2005
    Publication date: August 18, 2005
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Hirotsugu Takeuchi, Hisatsugu Matsunaga, Toru Ikemoto
  • Patent number: 6925835
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a refrigerant outlet is provided in an evaporator at a position upper than a refrigerant inlet. Therefore, a circulation performance of refrigerant flowing in the evaporator can be improved. Accordingly, even when a pumping capacity generated in the ejector becomes smaller, a sufficient amount of refrigerant can be drawn into the ejector from the evaporator. Thus, a refrigerant amount supplied to the evaporator can be effectively increased. Further, a control unit controls an amount of cooling air supplied to a condenser based on the temperature of the cooling air, to control a refrigerant state to be introduced to the nozzle. In this case, a pressure increasing amount in the ejector can be effectively increased, and consumption power in the compressor can be effectively increased.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: August 9, 2005
    Assignee: Denso Corporation
    Inventors: Haruyuki Nishijima, Hisatsugu Matsunaga, Tooru Ikemoto, Hirotsugu Takeuchi, Takeharu Asaoka
  • Patent number: 6918266
    Abstract: In an ejector, a nozzle is provided within a housing to defining a passage portion around the nozzle, and a suction port is provided in the housing to draw a refrigerant by entrainment of a driving refrigerant jetted from the nozzle. Further, a wall portion is provided in the housing such that the refrigerant drawn from the suction port into the passage portion is prevented from flowing toward an inlet side of the nozzle from a position of the suction port in an axial direction of the nozzle. Therefore, all of the refrigerant flowing from the suction port flows toward an outlet side of the nozzle without flowing toward the inlet side of the nozzle from the position of the suction port in the axial direction. Thus, it can prevent a large pressure loss from being caused in the refrigerant sucked from the suction port, and ejector efficiency can be effectively increased.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: July 19, 2005
    Assignee: DENSO Corporation
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Tooru Ikemoto, Yukio Ogawa, Hisatsugu Matsunaga, Takeharu Asaoka, Hirotsugu Takeuchi
  • Patent number: 6877339
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a variable throttle device is disposed upstream from the nozzle to decompress and expand high-pressure refrigerant flowing from a condenser. For example, the variable throttle device decompresses the high-pressure refrigerant in a gas-liquid two-phase state at an upstream position from the nozzle of the ejector. In addition, the variable throttle device includes a back pressure chamber having an inner pressure that changes by sensing a refrigerant temperature at a refrigerant outlet side of an evaporator, and a pressure introducing means for introducing a refrigerant pressure of a refrigerant outlet side of the evaporator to a side opposite to the back pressure chamber with respect to a diaphragm. Therefore, a pressure difference between the back pressure chamber and the side opposite to the back pressure chamber can be made smaller.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: April 12, 2005
    Assignee: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Makoto Ikegami
  • Patent number: 6871506
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a variable throttle is disposed upstream from the nozzle of the ejector to decompress and expand high-pressure refrigerant flowing from a radiator. For example, the variable throttle decompresses and expands the high-pressure refrigerant in a gas-liquid two-phase state at an upstream position from the nozzle of the ejector. The variable throttle controls a throttle opening degree so that a refrigerant super-heating degree at a refrigerant outlet side of an evaporator or at a refrigerant suction side of a compressor becomes in a predetermined range. Accordingly, the ejector cycle has an improved nozzle efficiency and an improved ejector efficiency in a wide load variation range of the ejector cycle.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: March 29, 2005
    Assignee: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Haruyuki Nishijima, Syuichi Mizuno
  • Publication number: 20050028552
    Abstract: A bypass valve 81 is opened until a predetermined period of time elapses after compressors 10a, 10b are stopped so as to equalize the pressure of a refrigerant circuit on a condenser 20 side with the pressure of a refrigerant circuit on an evaporator 30 side and, after the bypass valve 81 is closed, at least either of a refrigerant circuit 91 connecting to the compressor 10aand a refrigerant circuit 92 connecting to the compressor 10b is opened by opening a three-way valve 90 so that the refrigerant circuit on the condenser 20 side is made to communicate with the refrigerant circuit on the evaporator 30 side via the compressor 10 whereby, as the pressure equalized state can be maintained, it is possible to prevent the accumulation of a large amount of refrigerating machine oil on suction sides of the compressors 10 while the compressors 10 are stopped, thereby making it possible to prevent damage to the compressors 10 due to excessive compression when activated.
    Type: Application
    Filed: August 3, 2004
    Publication date: February 10, 2005
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Toru Ikemoto, Hisatsugu Matsunaga