Patents by Inventor Harvey H. Chen

Harvey H. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10485661
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 26, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, Jr., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Publication number: 20190336286
    Abstract: A prosthetic cardiac valve assembly and method of implanting the same is disclosed. In certain disclosed embodiments, the prosthetic valve assembly is an annuloplasty ring with an attached artificial valve. The prosthetic valve assembly can be secured to native heart tissue by suturing or other suitable method of the annuloplasty ring to the native heart tissue. The prosthetic valve leaflets of the prosthetic valve can also be anchored to the native heart tissue to prevent prolapse. In certain embodiments, the prosthetic valve leaflets are anchored to the native papillary muscles. In still other embodiments, the prosthetic valve assembly contains exactly the number of prosthetic valve leaflets as are in the native valve that the prosthetic valve assembly is configured to replace. With the prosthetic valve assembly properly positioned, it will replace the function of the native valve.
    Type: Application
    Filed: April 23, 2019
    Publication date: November 7, 2019
    Inventor: Harvey H. Chen
  • Publication number: 20180338828
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Application
    Filed: August 6, 2018
    Publication date: November 29, 2018
    Inventors: Rafael Pintor, Michael J. Scott, Thomas H. Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Publication number: 20180289475
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, JR., Myron Howanec, JR., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 10052200
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: August 21, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, Jr., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 10039641
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 7, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Rafael Pintor, Michael J. Scott, Thomas H. Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Publication number: 20180207411
    Abstract: An inflation system having two pressure vessels integrated into a balloon catheter. A pressurized chamber and a vacuum chamber are integrally attached to proximal end of the balloon catheter and activated by a common valve or switch. Pressure or vacuum is selectively transmitted to the balloon depending on the valve/switch position. The working fluid may be air, or a combination of air and saline with an intermediate piston/cylinder assembly. The balloon catheter may be a part of a heart valve delivery system with a balloon-expandable heart valve crimped onto the balloon.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Harvey H. Chen, Andrew Phung, Thomas H. Chien, Da-Yu Chang
  • Publication number: 20180147616
    Abstract: An apparatus for crimping a radially expandable stent includes a pressure vessel, shaping balloon, and mandrel. The mandrel is configured to slidingly receive a stent thereon, and to be slidingly advanced into the pressure vessel. The shaping balloon is inflated to radially compress the stent onto the form of the mandrel; such compression need not be uniform. Pressurization of the shaping balloon facilitates the expansion of the balloon to achieve compression of the stent, with depressurization of the shaping balloon causing the balloon to return to an unexpanded state.
    Type: Application
    Filed: January 25, 2018
    Publication date: May 31, 2018
    Inventor: Harvey H. Chen
  • Patent number: 9919137
    Abstract: An inflation system having two pressure vessels integrated into a balloon catheter. A pressurized chamber and a vacuum chamber are integrally attached to proximal end of the balloon catheter and activated by a common valve or switch. Pressure or vacuum is selectively transmitted to the balloon depending on the valve/switch position. The working fluid may be air, or a combination of air and saline with an intermediate piston/cylinder assembly. The balloon catheter may be a part of a heart valve delivery system with a balloon-expandable heart valve crimped onto the balloon.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 20, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Harvey H. Chen, Andrew Phung, Thomas Chien, Da-Yu Chang
  • Patent number: 9889487
    Abstract: An apparatus for crimping a radially expandable stent includes a pressure vessel, shaping balloon, and mandrel. The mandrel is configured to slidingly receive a stent thereon, and to be slidingly advanced into the pressure vessel. The shaping balloon is inflated to radially compress the stent onto the form of the mandrel; such compression need not be uniform. Pressurization of the shaping balloon facilitates the expansion of the balloon to achieve compression of the stent, with depressurization of the shaping balloon causing the balloon to return to an unexpanded state.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 13, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventor: Harvey H. Chen
  • Publication number: 20170281342
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, JR., Myron Howanec, David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Publication number: 20170224484
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Application
    Filed: November 23, 2016
    Publication date: August 10, 2017
    Inventors: Rafael Pintor, Michael J. Scott, Thomas H. Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Publication number: 20170080474
    Abstract: An apparatus for crimping a radially expandable stent includes a pressure vessel, shaping balloon, and mandrel. The mandrel is configured to slidingly receive a stent thereon, and to be slidingly advanced into the pressure vessel. The shaping balloon is inflated to radially compress the stent onto the form of the mandrel; such compression need not be uniform. Pressurization of the shaping balloon facilitates the expansion of the balloon to achieve compression of the stent, with depressurization of the shaping balloon causing the balloon to return to an unexpanded state.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 23, 2017
    Inventor: Harvey H. Chen
  • Patent number: 9504563
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: November 29, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Rafael Pintor, Michael J. Scott, Thomas Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Publication number: 20160296331
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 13, 2016
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, JR., Myron Howanec, JR., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 9433991
    Abstract: An apparatus for crimping a radially expandable stent includes a pressure vessel, shaping balloon, and mandrel. The mandrel is configured to slidingly receive a stent thereon, and to be slidingly advanced into the pressure vessel. The shaping balloon is inflated to radially compress the stent onto the form of the mandrel; such compression need not be uniform. Pressurization of the shaping balloon facilitates the expansion of the balloon to achieve compression of the stent, with depressurization of the shaping balloon causing the balloon to return to an unexpanded state.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: September 6, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventor: Harvey H. Chen
  • Patent number: 9375310
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 28, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace M. Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas Y. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Publication number: 20150066137
    Abstract: An inflation system having two pressure vessels integrated into a balloon catheter. A pressurized chamber and a vacuum chamber are integrally attached to proximal end of the balloon catheter and activated by a common valve or switch. Pressure or vacuum is selectively transmitted to the balloon depending on the valve/switch position. The working fluid may be air, or a combination of air and saline with an intermediate piston/cylinder assembly. The balloon catheter may be a part of a heart valve delivery system with a balloon-expandable heart valve crimped onto the balloon.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Inventors: Harvey H. Chen, Andrew Phung, Thomas Chien, Da-Yu Chang
  • Patent number: 8900295
    Abstract: A prosthetic valve assembly and method of implanting same is disclosed. The prosthetic valve assembly includes a prosthetic valve formed by support frame and valve leaflets, with one or more tethers each having a first end secured to the support frame and the second end attached to, or configured for attachment to, to papillary muscles or other ventricular tissue. The tether is configured and positioned so as to avoid contact or other interference with movement of the valve leaflets, while at the same time providing a tethering action between the support frame and the ventricular tissue. The valve leaflets may be flexible (e.g., so-called tissue or synthetic leaflets) or mechanical.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 2, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: John F. Migliazza, Hugues LaFrance, Harvey H. Chen, Travis Zenyo Oba
  • Patent number: RE47490
    Abstract: A prosthetic valve assembly and method of implanting same is disclosed. The prosthetic valve assembly includes a prosthetic valve formed by support frame and valve leaflets, with one or more tethers each having a first end secured to the support frame and the second end attached to, or configured for attachment to, to papillary muscles or other ventricular tissue. The tether is configured and positioned so as to avoid contact or other interference with movement of the valve leaflets, while at the same time providing a tethering action between the support frame and the ventricular tissue. The valve leaflets may be flexible (e.g., so-called tissue or synthetic leaflets) or mechanical.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: July 9, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: John F Migliazza, Hugues LaFrance, Harvey H Chen, Travis Zenyo Oba, Manouchehr A Miraki