Patents by Inventor Harvey Liu

Harvey Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903878
    Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: February 20, 2024
    Assignee: AMO Development, LLC
    Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
  • Patent number: 11690760
    Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: July 4, 2023
    Assignee: AMO Development, LLC
    Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
  • Publication number: 20220378615
    Abstract: A method implemented in an ophthalmic surgical laser system for forming a corneal flap in a patient's eye with improved bubble management. The flap includes a horizontal bed and a vertical or near vertical side cut around the periphery of the bed except for an uncut hinge area. The side cut has a bubble barrier layer that can prevent bubbles formed by the laser-tissue interaction from escaping into an interface between the corneal and the patient interface lens. In some embodiments, the bubble barrier layer is a thin uncut layer, located in the epithelium of the cornea, that separates the side cut into two portions. In other embodiments, the side cut does not reach the anterior corneal surface, leaving an uncut bubble barrier layer located with the epithelium. In other embodiments, an additional side cut portion is formed through the uncut bubble barrier layer as the last step.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 1, 2022
    Inventors: Alireza Malek Tabrizi, James Hill, Nima Khatibzadeh, Pavel Vodkin, Harvey Liu, Hong Fu, Griffith Altmann
  • Publication number: 20220175581
    Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 9, 2022
    Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
  • Publication number: 20210022917
    Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
  • Patent number: 10898382
    Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 26, 2021
    Assignee: AMO Development, LLC
    Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
  • Publication number: 20180303664
    Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
  • Patent number: 9302118
    Abstract: A phototherapy device includes an outlet end to be placed in contact with a person's skin, a heat exchanger, an optical structure arranged between the heat exchanger and the outlet end, and a light source arranged between the heat exchanger and the outlet end, and configured to emit light for delivery to the skin through or adjacent the optical structure. The heat exchanger may include a first heat transfer portion thermally coupled to the light source for dissipating heat from the light source, and a second heat transfer portion thermally coupled to the optical structure for dissipating heat from the optical structure. The first and second heat transfer portions of the heat exchanger may be substantially thermally isolated from each other, e.g., partially or completely physically separated from each other.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: April 5, 2016
    Assignee: TRIA BEAUTY, INC.
    Inventors: Mark V. Weckwerth, C. Andrew Schuetz, Harvey Liu, Patrick Reichert, Tobin C. Island, Robert E. Grove
  • Patent number: 9216198
    Abstract: The present disclosure describes compositions providing for controlled release of nitric oxide (NO) and methods for production of these compositions. In some embodiments, the compositions may include a biodegradable polymer and a nitric oxide-releasing material at least partially encapsulated by the biodegradable polymer. Nitric oxide-releasing materials may include, for example, diazeniumdiolates and nitric oxide contained within a zeolite, metal-organic framework or other porous material. In general, the compositions are spun into a porous fiber, which may be further annealed by heating in order to densify the fiber. Annealing may prolong the NO release profile. Medical devices containing the compositions described herein are also contemplated by the present disclosure. Medical devices include, for example, textiles, bandages and articles of clothing.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 22, 2015
    Assignee: THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Kenneth J. Balkus, Jr., Harvey A. Liu
  • Publication number: 20150057725
    Abstract: A phototherapy device includes an outlet end to be placed in contact with a person's skin, a heat exchanger, an optical structure arranged between the heat exchanger and the outlet end, and a light source arranged between the heat exchanger and the outlet end, and configured to emit light for delivery to the skin through or adjacent the optical structure. The heat exchanger may include a first heat transfer portion thermally coupled to the light source for dissipating heat from the light source, and a second heat transfer portion thermally coupled to the optical structure for dissipating heat from the optical structure. The first and second heat transfer portions of the heat exchanger may be substantially thermally isolated from each other, e.g., partially or completely physically separated from each other.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Inventors: Mark V. Weckwerth, C. Andrew Schuetz, Harvey Liu, Patrick Reichert, Tobin C. Island, Robert E. Grove
  • Publication number: 20100285100
    Abstract: The present disclosure describes compositions providing for controlled release of nitric oxide (NO) and methods for production of these compositions. In some embodiments, the compositions may include a biodegradable polymer and a nitric oxide-releasing material at least partially encapsulated by the biodegradable polymer. Nitric oxide-releasing materials may include, for example, diazeniumdiolates and nitric oxide contained within a zeolite, metal-organic framework or other porous material. In general, the compositions are spun into a porous fiber, which may be further annealed by heating in order to densify the fiber. Annealing may prolong the NO release profile. Medical devices containing the compositions described herein are also contemplated by the present disclosure. Medical devices include, for example, textiles, bandages and articles of clothing.
    Type: Application
    Filed: March 30, 2010
    Publication date: November 11, 2010
    Inventors: Kenneth J. Balkus, JR., Harvey A. Liu
  • Publication number: 20060009749
    Abstract: A diffuse light source assembly and method including a light source for generating forward propagating light, a solid lightguide disposed adjacent the light source, a diffuser and a back reflecting surface. The solid lightguide includes an input face for receiving the forward propagating light, a sidewall for conveying the forward propagating light via total internal reflection, and an output face for transmitting the forward propagating light. The diffuser is disposed adjacent the output face for diffusing the transmitted forward propagating light, wherein a portion of the forward propagating light is transformed into reverse propagating light, by at least one of the output face and the diffuser, that is conveyed by sidewall via total internal reflection and transmitted by the input face. The back reflecting surface is disposed adjacent the light source for reflecting the reverse propagating light back into the lightguide via the input face.
    Type: Application
    Filed: June 20, 2005
    Publication date: January 12, 2006
    Inventors: Mark Weckwerth, Tobin Island, Robert Grove, Harvey Liu