Patents by Inventor Harvey Liu
Harvey Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250113996Abstract: A method implemented in an ophthalmic laser system to perform iris registration based on two iris images taken with the patient at upright and supine positions, respectively. For each iris image, the iris region is transformed into a rectangular rubbersheet, with the radial and angular coordinates of the iris image respectively mapped to vertical and horizontal coordinates of the rubbersheet. A horizontal one-dimensional log-Gabor transform is applied to the rubbersheet line-by-line. The transformed rubbersheet is binarized line-by-line. The two binary rubbersheets are compared at a series of relative horizontal shifts to determine the horizontal shift value that produces the lowest Hamming distance between the two binary rubbersheets, and the cyclotorsion rotation of the eye between the upright and supine positions is calculated accordingly.Type: ApplicationFiled: October 7, 2024Publication date: April 10, 2025Inventors: Javier Gonzalez, Michael Campos, Jayesh Shah, Harvey Liu
-
Publication number: 20240374428Abstract: During laser ophthalmic procedures, back-reflected treatment laser light is detected by an auto-Z module and analyzed in real-time to determine various aspects of laser-tissue interaction during the procedure. This method can detect the presence of “black spots” (locations where no laser-tissue interaction occurred), sub-optimal incision quality, etc. in real time, and allows for dynamical adjustment of the laser treatment parameters such as pulse energy, laser spot separation, etc. to correct the detected problems. The auto-Z signal analysis may also depend on which incision segment or region is currently being cut, to optimally control different cutting segments. This method improves corneal incision quality and helps to achieves consistent laser-tissue interaction from patient to patient.Type: ApplicationFiled: May 10, 2024Publication date: November 14, 2024Inventors: Alireza Malek Tabrizi, Griffith Altmann, Harvey Liu, Zenon Witowski, Mohammad Saidur Rahaman, Hong Fu
-
Publication number: 20240180746Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.Type: ApplicationFiled: February 12, 2024Publication date: June 6, 2024Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
-
Patent number: 11903878Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.Type: GrantFiled: December 2, 2021Date of Patent: February 20, 2024Assignee: AMO Development, LLCInventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
-
Patent number: 11690760Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.Type: GrantFiled: October 9, 2020Date of Patent: July 4, 2023Assignee: AMO Development, LLCInventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
-
Publication number: 20220378615Abstract: A method implemented in an ophthalmic surgical laser system for forming a corneal flap in a patient's eye with improved bubble management. The flap includes a horizontal bed and a vertical or near vertical side cut around the periphery of the bed except for an uncut hinge area. The side cut has a bubble barrier layer that can prevent bubbles formed by the laser-tissue interaction from escaping into an interface between the corneal and the patient interface lens. In some embodiments, the bubble barrier layer is a thin uncut layer, located in the epithelium of the cornea, that separates the side cut into two portions. In other embodiments, the side cut does not reach the anterior corneal surface, leaving an uncut bubble barrier layer located with the epithelium. In other embodiments, an additional side cut portion is formed through the uncut bubble barrier layer as the last step.Type: ApplicationFiled: May 18, 2022Publication date: December 1, 2022Inventors: Alireza Malek Tabrizi, James Hill, Nima Khatibzadeh, Pavel Vodkin, Harvey Liu, Hong Fu, Griffith Altmann
-
Publication number: 20220175581Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.Type: ApplicationFiled: December 2, 2021Publication date: June 9, 2022Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
-
Publication number: 20210022917Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.Type: ApplicationFiled: October 9, 2020Publication date: January 28, 2021Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
-
Patent number: 10898382Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.Type: GrantFiled: April 18, 2018Date of Patent: January 26, 2021Assignee: AMO Development, LLCInventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
-
Publication number: 20180303664Abstract: A single-piece patient interface device (PI) for coupling an patient's eye to an ophthalmic surgical laser system, which includes a rigid shell, a flexible suction ring joined to a lower edge of the shell, an applanation lens, and a flexible annular diaphragm which joins the applanation lens to the shell near the lower edge of the shell. The flexible diaphragm allows the applanation lens to move relative to the shell, including to shift in longitudinal and lateral directions of the shell and to tilt. In operation, the surgeon first secures the PI to the patient's eye by hand, and then couples the laser system to the PI by lowering the laser delivery head into the PI shell. During the lowering process, the laser delivery head presses the applanation lens down relative to the PI to applanate the cornea of the eye.Type: ApplicationFiled: April 18, 2018Publication date: October 25, 2018Inventors: Roger W. Accurso, Jose L. Garcia, Daryl Wong, Hong Fu, Harvey Liu, Leonard R. Borrmann
-
Patent number: 9302118Abstract: A phototherapy device includes an outlet end to be placed in contact with a person's skin, a heat exchanger, an optical structure arranged between the heat exchanger and the outlet end, and a light source arranged between the heat exchanger and the outlet end, and configured to emit light for delivery to the skin through or adjacent the optical structure. The heat exchanger may include a first heat transfer portion thermally coupled to the light source for dissipating heat from the light source, and a second heat transfer portion thermally coupled to the optical structure for dissipating heat from the optical structure. The first and second heat transfer portions of the heat exchanger may be substantially thermally isolated from each other, e.g., partially or completely physically separated from each other.Type: GrantFiled: August 26, 2013Date of Patent: April 5, 2016Assignee: TRIA BEAUTY, INC.Inventors: Mark V. Weckwerth, C. Andrew Schuetz, Harvey Liu, Patrick Reichert, Tobin C. Island, Robert E. Grove
-
Publication number: 20150057725Abstract: A phototherapy device includes an outlet end to be placed in contact with a person's skin, a heat exchanger, an optical structure arranged between the heat exchanger and the outlet end, and a light source arranged between the heat exchanger and the outlet end, and configured to emit light for delivery to the skin through or adjacent the optical structure. The heat exchanger may include a first heat transfer portion thermally coupled to the light source for dissipating heat from the light source, and a second heat transfer portion thermally coupled to the optical structure for dissipating heat from the optical structure. The first and second heat transfer portions of the heat exchanger may be substantially thermally isolated from each other, e.g., partially or completely physically separated from each other.Type: ApplicationFiled: August 26, 2013Publication date: February 26, 2015Inventors: Mark V. Weckwerth, C. Andrew Schuetz, Harvey Liu, Patrick Reichert, Tobin C. Island, Robert E. Grove
-
Publication number: 20060009749Abstract: A diffuse light source assembly and method including a light source for generating forward propagating light, a solid lightguide disposed adjacent the light source, a diffuser and a back reflecting surface. The solid lightguide includes an input face for receiving the forward propagating light, a sidewall for conveying the forward propagating light via total internal reflection, and an output face for transmitting the forward propagating light. The diffuser is disposed adjacent the output face for diffusing the transmitted forward propagating light, wherein a portion of the forward propagating light is transformed into reverse propagating light, by at least one of the output face and the diffuser, that is conveyed by sidewall via total internal reflection and transmitted by the input face. The back reflecting surface is disposed adjacent the light source for reflecting the reverse propagating light back into the lightguide via the input face.Type: ApplicationFiled: June 20, 2005Publication date: January 12, 2006Inventors: Mark Weckwerth, Tobin Island, Robert Grove, Harvey Liu