Patents by Inventor Harvey Wagner

Harvey Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7113676
    Abstract: A planar optical isolator is formed within the silicon surface layer of an SOI structure. A forward-directed signal is applied to an input waveguiding section of the isolator and thereafter propagates through a non-reciprocal waveguide coupling region into an output waveguide section. A rearward-directed signal enters via the output waveguide section and is thereafter coupled into the non-reciprocal waveguide structure, where the geometry of the structure functions to couple only a small amount of the reflected signal into the input waveguide section. In one embodiment, the non-reciprocal structure comprises an N-way directional coupler (with one output waveguide, one input waveguide and N?1 isolating waveguides).
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: September 26, 2006
    Inventors: David Piede, Margaret Ghiron, Prakash Gothoskar, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski, Harvey Wagner
  • Publication number: 20060126993
    Abstract: An SOI-based optical interconnection arrangement is provided that significantly reduces the size, complexity and power consumption requires of conventional high density electrical interconnections. In particular, a group of optical modulators and wavelength division multiplexers/demultiplexers are used in association with traditional electrical signal paths to “concentrate” a large number of the electrical-pinouts onto one optical waveguide (e.g., fiber). By utilizing a number of such SOI-based signal concentration structures, an optical backplane can be formed that couples all of these concentration structures through one optical substrate and then onto a separate number of output/receiving boards. Additionally, optical gain material may be embedded within the backplane element to further enhance the optical signal quality.
    Type: Application
    Filed: November 25, 2005
    Publication date: June 15, 2006
    Inventors: David Piede, Bipin Dama, Kalpendu Shastri, John Fangman, Harvey Wagner, Margaret Ghiron
  • Publication number: 20060018597
    Abstract: A tunable optical coupling arrangement for use with a relatively thin (generally sub-micron thickness) silicon waveguiding layer of a silicon-on-insulator (SOI) substrate. The arrangement comprises a multi-layer structure including a substrate for supporting one or more diffractive optical elements and a layer of tunable liquid crystal material. The multi-layer structure is disposed over a conventional SOI substrate including the thin silicon waveguiding layer, where the refractive index of the liquid crystal material can be modified to adjust the deflection of an input optical beam through the various diffractive optical elements and present an optimized launch angle into the silicon waveguiding layer, thus reducing insertion loss at the waveguiding layer.
    Type: Application
    Filed: July 22, 2005
    Publication date: January 26, 2006
    Inventors: David Piede, Prakash Gothoskar, Harvey Wagner, Margaret Ghiron
  • Publication number: 20050123232
    Abstract: A planar optical isolator is formed within the silicon surface layer of an SOI structure. A forward-directed signal is applied to an input waveguiding section of the isolator and thereafter propagates through a non-reciprocal waveguide coupling region into an output waveguide section. A rearward-directed signal enters via the output waveguide section and is thereafter coupled into the non-reciprocal waveguide structure, where the geometry of the structure functions to couple only a small amount of the reflected signal into the input waveguide section. In one embodiment, the non-reciprocal structure comprises an N-way directional coupler (with one output waveguide, one input waveguide and N-1 isolating waveguides).
    Type: Application
    Filed: December 6, 2004
    Publication date: June 9, 2005
    Inventors: David Piede, Margaret Ghiron, Prakash Gothoskar, Robert Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine Yanushefski, Harvey Wagner