Patents by Inventor Hassan Abdulla

Hassan Abdulla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11479779
    Abstract: Embodiments disclosed include systems and methods to generate and/or improve non-sporulating filamentous fungal cells using high-throughput techniques. Embodiments disclosed also include systems and methods for evaluation and iterative adjustment of methods to generate and/or isolate and select desired strains of non-sporulating filamentous fungal cells using high-throughput techniques.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: October 25, 2022
    Assignee: Zymergen Inc.
    Inventors: Benjamin Knox, Nasim Mansoori Zangir, Ryan Evan Martinez, Hassan Abdulla
  • Publication number: 20220145288
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 11242524
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: February 8, 2022
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20220033831
    Abstract: Embodiments disclosed include systems and methods to generate and/or improve non-sporulating filamentous fungal cells using high-throughput techniques. Embodiments disclosed also include systems and methods for evaluation and iterative adjustment of methods to generate and/or isolate and select desired strains of non-sporulating filamentous fungal cells using high-throughput techniques.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 3, 2022
    Inventors: Benjamin Knox, Nasim Mansoori Zangir, Ryan Evan Martinez, Hassan Abdulla
  • Patent number: 11180753
    Abstract: HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods can be carried out within optofluidic devices.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 23, 2021
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20210284993
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 16, 2021
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 10954511
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 23, 2021
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20200123535
    Abstract: The present disclosure provides a HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20200071693
    Abstract: The present disclosure provides a HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition.
    Type: Application
    Filed: October 11, 2019
    Publication date: March 5, 2020
    Inventors: Vytas Sunspiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areaosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir FONG, III
  • Publication number: 20080184771
    Abstract: The restaurant and bar industry is in dire need for an easy, affordable and efficient way of counting bottled liquid inventory. Gen-X Posi-Count Automatic Tilt/Tip-Over Bottled Liquid Pour Counter is an automatic counter that counts, records and displays each time a bottle is tilted or tipped over to the point of which the liquid is poured, for the purpose of keeping an accurate count of how many drinks or pours are supplied out of each bottle. Gen-X Posi-Count Automatic Tilt/Tip-Over Bottled Liquid Pour Counter is equipped with a tilt/tip-over switch that counts the tilts/tip-overs from 1 to 9999 tilts/tip-overs. The device is equipped with a reset button when pushed, is reset to 0. The device is equipped with a push button light that when pressed it illuminates the four digit display for viewing the recorded count in a dark environment. The device attaches to the subject liquid bottle and counts, records and displays each time the bottle is tilted or tipped over to the pouring position.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Inventor: Hassan Abdulla Ebrahim