Patents by Inventor Hassan Askari
Hassan Askari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240294184Abstract: A method for probabilistic autonomous vehicle control includes receiving a plurality of unfiltered sensor signals from a sensor system of a vehicle and determining, in real time, a failure probability of the sensor system using the unfiltered sensor signals. The method further includes determining a failure probability of a plurality of estimation signals at each time step using the failure probability of the sensor system and determining a failure probability of a plurality of Advanced Driver Assistance System (ADAS) subfunction commands using the failure probability of the plurality of estimation signals at each time step. Further, the method includes determining remedial actions for the plurality of ADAS subfunction commands based on the failure probability of the plurality of ADAS subfunction commands.Type: ApplicationFiled: March 3, 2023Publication date: September 5, 2024Inventors: Hassan Askari, SeyedAlireza Kasaiezadeh Mahabadi, Reza Zarringhalam, Mohammadali Shahriari, Khizar Ahmad Qureshi
-
Publication number: 20240294163Abstract: A system to map control system configurations for vehicle torque actuators includes a control unit of a vehicle. A first torque actuator of a first power unit delivers torque to rear wheels of the vehicle, and a second torque actuator of a second power unit delivers torque to front wheels of the vehicle. Multiple input items are received by the control unit, including: multiple configurations; one or more operating points; multiple configuration classifications including: a torque constraint; a torque reference; and an enabling condition; and identification of one or more priority assignments. The priority assignments are applied to the configurations, the operating points and the configuration classifications to determine a control action as sensed vehicle operating conditions change. Individual ones of the configurations are mapped to a normalized torque split ratio.Type: ApplicationFiled: March 2, 2023Publication date: September 5, 2024Inventors: Saurabh Kapoor, Hassan Askari, Mustafa Hakan Turhan, SeyedAlireza Kasaiezadeh Mahabadi, Jason D. Fahland
-
Patent number: 12024163Abstract: Systems and methods of alerting an occupant of a vehicle to an obstacle to a side of the vehicle. The systems and methods include receiving turn indicating data from at least one vehicle system, receiving perception data from a perception system of the vehicle, predicting a vehicle turn based on the turn predicting data, generating an obstacle alert, which is output through an output device of the vehicle, when an obstacle is detected within a first sized detection zone or a second sized detection zone using the perception data, and switching from using the first sized detection zone to using the second sized detection zone for generating the obstacle alert in response to predicting the vehicle turn. The second sized detection zone is extended as compared to the first sized detection zone.Type: GrantFiled: May 12, 2022Date of Patent: July 2, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Mohammadali Shahriari, Vaibhav J Lawand, Hassan Askari, Rakesh Kumar, Ricky Lin
-
Architecture and methodology of adaptive tire force prediction for integrated vehicle motion control
Patent number: 12017660Abstract: A system for adaptive tire force prediction in a motor vehicle includes a control module that executes program code portions that receive real-time static and dynamic data from motor vehicle sensors, that model forces at each tire of the motor vehicle at one or more incremental time steps, that estimate actual forces at each tire of the motor vehicle at each of the one or more incremental time steps, that adaptively predict tire forces at each tire of the motor vehicle at each of the one or more incremental time steps, that generate one or more control commands for actuators of the motor vehicle, that capture discrepancies between real-time force estimations and nominal force calculations at each tire of the motor vehicle, and that apply compensation parameters to reduce tracking errors in the one or more control commands to the one or more actuators of the motor vehicle.Type: GrantFiled: November 3, 2021Date of Patent: June 25, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Hassan Askari, Seyedeh Asal Nahidi, Shamim Mashrouteh, Ruixing Long, Bharath Pattipati, SeyedAlireza Kasaiezadeh Mahabadi, Hualin Tan, Lapo Frascati -
Publication number: 20240190451Abstract: A data health monitoring and recording system for a vehicle includes a data recording infrastructure and one or more controllers. The one or more controllers include a multi-layer control software architecture including two or more software layers. The one or more controllers execute instructions to monitor, by a health monitoring structure that is part of the multi-layer control software architecture, one or more parameters calculated by each of the two or more software layers. The one or more controllers compare a respective parameter of a respective software layer with a predetermined corresponding performance metric for a required time horizon. In response to determining the respective parameter of the respective software layer does not meet the predetermined corresponding performance metric for the required time horizon, a trigger that instructs the data recording infrastructure to record the parameters calculated by each of the two or more software layers is generated.Type: ApplicationFiled: December 8, 2022Publication date: June 13, 2024Inventors: SeyedAlireza Kasaiezadeh Mahabadi, Ruixing Long, Hassan Askari, Shamim Mashrouteh, Saurabh Kapoor, Naser Mehrabi, Amir Abolhassani, Mansour Ataei
-
Publication number: 20240182040Abstract: Methods and systems are provided for determining and mitigating vehicle pull force from passing other vehicles.Type: ApplicationFiled: December 5, 2022Publication date: June 6, 2024Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Hassan Askari, Mohammadali Shahriari, Reza Zarringhalam, Ashraf Abualfellat, Daniel James Cornelius
-
Publication number: 20240161556Abstract: A fault remediation system for a vehicle includes one or more controllers in electronic communication with one or more consumed interfaces and one or more provided interfaces. The one or more controllers execute instructions to receive, from the one or more consumed interfaces, a consumed signal and perform fault detection upon the consumed signal to determine the presence of an active fault within the consumed signal. In response to detecting an active fault with the consumed signal, the one or more controllers select a remediation state from a group of two or more prospective remediation states based on a significance analysis of the consumed signal. The one or more controllers evaluate a relevant subfunction that corresponds to the consumed signal that the remediation state addresses for the presence of remediation tolerance and generates arbitration instructions based on the remediation tolerance.Type: ApplicationFiled: November 15, 2022Publication date: May 16, 2024Inventors: Saurabh Kapoor, Mustafa Hakan Turhan, Nauman Sohani, Hassan Askari, Naser Mehrabi, Ehsan Asadi, Sresht Gurumoorthi Annadevara, SeyedAlireza Kasaiezadeh Mahabadi
-
Patent number: 11934258Abstract: A data analytics system for a vehicle includes one or more controllers having a multi-layered control software architecture including two or more software layers and a health monitoring structure. The one or more controllers execute instructions to receive a fault, and in response to receiving the fault, generate, by the health monitoring structure, a plurality of unique triggers as the fault propagates throughout the multi-layered control software architecture. The controllers build a network including a plurality of propagation paths and identify one or more main propagation paths that are part of the network based on a data analysis of a mock big data set. The one or more controllers build a complete propagation pathway including two or more main propagation paths. In response to determining only one main propagation path, the controllers determine a root cause of the fault based on the only one main propagation path.Type: GrantFiled: December 8, 2022Date of Patent: March 19, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: SeyedAlireza Kasaiezadeh Mahabadi, Hassan Askari, Amir Abolhassani, Mansour Ataei
-
Publication number: 20230365124Abstract: Systems and methods of alerting an occupant of a vehicle to an obstacle to a side of the vehicle. The systems and methods include receiving turn indicating data from at least one vehicle system, receiving perception data from a perception system of the vehicle, predicting a vehicle turn based on the turn predicting data, generating an obstacle alert, which is output through an output device of the vehicle, when an obstacle is detected within a first sized detection zone or a second sized detection zone using the perception data, and switching from using the first sized detection zone to using the second sized detection zone for generating the obstacle alert in response to predicting the vehicle turn. The second sized detection zone is extended as compared to the first sized detection zone.Type: ApplicationFiled: May 12, 2022Publication date: November 16, 2023Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Mohammadali Shahriari, Vaibhav J Lawand, Hassan Askari, Rakesh Kumar, Ricky Lin
-
ARCHITECTURE AND METHODOLOGY OF ADAPTIVE TIRE FORCE PREDICTION FOR INTEGRATED VEHICLE MOTION CONTROL
Publication number: 20230139179Abstract: A system for adaptive tire force prediction in a motor vehicle includes a control module that executes program code portions that receive real-time static and dynamic data from motor vehicle sensors, that model forces at each tire of the motor vehicle at one or more incremental time steps, that estimate actual forces at each tire of the motor vehicle at each of the one or more incremental time steps, that adaptively predict tire forces at each tire of the motor vehicle at each of the one or more incremental time steps, that generate one or more control commands for actuators of the motor vehicle, that capture discrepancies between real-time force estimations and nominal force calculations at each tire of the motor vehicle, and that apply compensation parameters to reduce tracking errors in the one or more control commands to the one or more actuators of the motor vehicle.Type: ApplicationFiled: November 3, 2021Publication date: May 4, 2023Inventors: Hassan Askari, Seyedeh Asal Nahidi, Shamim Mashrouteh, Ruixing Long, Bharath Pattipati, SeyedAlireza Kasaiezadeh Mahabadi, Hualin Tan, Lapo Frascati -
Patent number: 10738097Abstract: An interferon-beta (IFN?) analog peptide including a plurality of amino acid substitutions in an amino acid sequence of IFN? as set forth in SEQ ID No. 4. The IFN? analog peptide may include a plurality of amino acid substitution in the amino acid sequence of IFN? in at least one position of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, and combinations thereof, numbered in accordance with SEQ ID No. 4.Type: GrantFiled: October 4, 2018Date of Patent: August 11, 2020Inventors: Mansour Poorebrahim, Matin Asghari, Mohammad Hossein Nasr-Esfahani, Nima Sanadgol, Mohammad Foad Abazari, Maryam Nouri Aleagha, Hassan Askari, Solmaz Sadeghi
-
Publication number: 20190092832Abstract: An interferon-beta (IFN?) analog peptide including a plurality of amino acid substitutions in an amino acid sequence of IFN? as set forth in SEQ ID No. 4. The IFN? analog peptide may include a plurality of amino acid substitution in the amino acid sequence of IFN? in at least one position of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, and combinations thereof, numbered in accordance with SEQ ID No. 4.Type: ApplicationFiled: October 4, 2018Publication date: March 28, 2019Inventors: Mansour Poorebrahim, Matin Asghari, Mohammad Hossein Nasr-Esfahani, Nima Sanadgol, Mohammad Foad Abazari, Maryam Nouri Aleagha, Hassan Askari, Solmaz Sadeghi