Patents by Inventor Hassan El-Sayed El-Shall
Hassan El-Sayed El-Shall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11060401Abstract: A process and associated system for the improved reclamation of disturbed lands (e.g., mined lands) is disclosed. In particular, the system including a dewatering cyclone, a screw classifier, and a dewatering apparatus (e.g. a dewatering belt) arranged in series to enable rapid and cost effective dewatering of slurries containing dilute clay and sand tailings to create an improved engineered reclamation material (ERM). The ERM formed by the controlled combining of dewatered sand tailings with dilute clay slurry and with a flocculant and overburden. The ratio of clay:sand:overburden of the ERM may be achieved by balancing the solid content (Cw) and water content (1?Cw) materials of the clay slurry, sand tailings and overburden. In some embodiments, the system may include at least one additional component, such as, for example, static screen(s), centrifuge(s), vibrating screens, drum screens, belt screens, belt filters, and/or other liquid-solid separation devices.Type: GrantFiled: May 14, 2019Date of Patent: July 13, 2021Inventors: James Julian Hazen, Hassan El-Sayed El-Shall, John Raymond Schmedeman
-
Publication number: 20190264562Abstract: A process and associated system for the improved reclamation of disturbed lands (e.g., mined lands) is disclosed. In particular, the system including a dewatering cyclone, a screw classifier, and a dewatering apparatus (e.g. a dewatering belt) arranged in series to enable rapid and cost effective dewatering of slurries containing dilute clay and sand tailings to create an improved engineered reclamation material (ERM). The ERM formed by the controlled combining of dewatered sand tailings with dilute clay slurry and with a flocculant and overburden. The ratio of clay:sand: overburden of the ERM may be achieved by balancing the solid content (Cw) and water content (1?Cw) materials of the clay slurry, sand tailings and overburden. In some embodiments, the system may include at least one additional component, such as, for example, static screen(s), centrifuge(s), vibrating screens, drum screens, belt screens, belt filters, and/or other liquid-solid separation devices.Type: ApplicationFiled: May 14, 2019Publication date: August 29, 2019Applicant: HPS Enterprises II, LLCInventors: James Julian Hazen, Hassan El-Sayed El-Shall, John Raymond Schmedeman
-
Patent number: 10337325Abstract: A process and associated system for the improved reclamation of disturbed lands (e.g., mined lands) is disclosed. In particular, the system including a dewatering cyclone, a screw classifier, and a dewatering apparatus (e.g. a dewatering belt) arranged in series to enable rapid and cost effective dewatering of slurries containing dilute clay and sand tailings to create an improved engineered reclamation material (ERM). The ERM formed by the controlled combining of dewatered sand tailings with dilute clay slurry and with a flocculant and overburden. The ratio of clay:sand:overburden of the ERM may be achieved by balancing the solid content (Cw) and water content (1?Cw) materials of the clay slurry, sand tailings and overburden. In some embodiments, the system may include at least one additional component, such as, for example, static screen(s), centrifuge(s), vibrating screens, drum screens, belt screens, belt filters, and/or other liquid-solid separation devices.Type: GrantFiled: June 23, 2017Date of Patent: July 2, 2019Inventors: James Julian Hazen, Hassan El-Sayed El-Shall, John Raymond Schmedeman
-
Publication number: 20170370217Abstract: A process and associated system for the improved reclamation of disturbed lands (e.g., mined lands) is disclosed. In particular, the system including a dewatering cyclone, a screw classifier, and a dewatering apparatus (e.g. a dewatering belt) arranged in series to enable rapid and cost effective dewatering of slurries containing dilute clay and sand tailings to create an improved engineered reclamation material (ERM). The ERM formed by the controlled combining of dewatered sand tailings with dilute clay slurry and with a flocculant and overburden. The ratio of clay:sand:overburden of the ERM may be achieved by balancing the solid content (Cw) and water content (1-Cw) materials of the clay slurry, sand tailings and overburden. In some embodiments, the system may include at least one additional component, such as, for example, static screen(s), centrifuge(s), vibrating screens, drum screens, belt screens, belt filters, and/or other liquid-solid separation devices.Type: ApplicationFiled: June 23, 2017Publication date: December 28, 2017Inventors: James Julian Hazen, Hassan El-Sayed El-Shall, John Raymond Schmedeman
-
Patent number: 8083071Abstract: A classifier includes a central particle inlet, an inclined feed surface, and a classification surface. A plurality of particle feeding vanes are positioned above the feed surface, and the plurality of particle feeding vanes rotate above the feed surface. A plurality of classification vanes are positioned above the classification surface, and the plurality of classification vanes rotate above the classification surface. Particles enter the classifier through the inlet near an axis of rotation and flow radially outward on the feed surface to the classification surface.Type: GrantFiled: July 16, 2007Date of Patent: December 27, 2011Assignee: University of Florida Research Foundation, Inc.Inventors: Spyros A. Svoronos, Dongchul Lee, Hassan El-Sayed El-Shall
-
Publication number: 20100176036Abstract: A classifier includes a central particle inlet, an inclined feed surface, and a classification surface. A plurality of particle feeding vanes are positioned above the feed surface, and the plurality of particle feeding vanes rotate above the feed surface. A plurality of classification vanes are positioned above the classification surface, and the plurality of classification vanes rotate above the classification surface. Particles enter the classifier through the inlet near an axis of rotation and flow radially outward on the feed surface to the classification surface.Type: ApplicationFiled: July 16, 2007Publication date: July 15, 2010Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATIONInventors: Spyros A. Svoronos, Dongchul Lee, Hassan El-Sayed El-Shall
-
Patent number: 6739456Abstract: An apparatus for classifying a mixture of fine and coarse particles in a fluid stream by size or density comprises a housing, a boundary layer momentum transfer device, and an inlet flow control mechanism. The housing comprises an inlet, an interior chamber, and a fine particle outlet. The boundary layer momentum transfer device comprises a plurality of disks stacked in spaced, parallel relation in the interior chamber. The disks are rotatable about a disk axis. The disks have respective central openings cooperatively defining a plenum having a closed axial end and an opposing open axial end. The plenum communicates with spaces defined between each adjacent disk to cooperatively define a fine particle flow path from the interior chamber, through the spaces, through the plenum and the open axial end thereof, and to the fine particle outlet. The inlet flow control mechanism communicates with the interior chamber and provides an adjustable inlet flow path into the interior chamber.Type: GrantFiled: June 3, 2002Date of Patent: May 25, 2004Assignee: University of Florida Research Foundation, Inc.Inventors: Spyros A. Svoronos, H. Steven Crouch, Hassan El-Sayed El-Shall, Kevin W. Powers, Gary Wayne Scheiffele, Rachel Anna Worthen, Steve Robin Wright
-
Publication number: 20030221996Abstract: An apparatus for classifying a mixture of fine and coarse particles in a fluid stream by size or density comprises a housing, a boundary layer momentum transfer device, and an inlet flow control mechanism. The housing comprises an inlet, an interior chamber, and a fine particle outlet. The boundary layer momentum transfer device comprises a plurality of disks stacked in spaced, parallel relation in the interior chamber. The disks are rotatable about a disk axis. The disks have respective central openings cooperatively defining a plenum having a closed axial end and an opposing open axial end. The plenum communicates with spaces defined between each adjacent disk to cooperatively define a fine particle flow path from the interior chamber, through the spaces, through the plenum and the open axial end thereof, and to the fine particle outlet. The inlet flow control mechanism communicates with the interior chamber and provides an adjustable inlet flow path into the interior chamber.Type: ApplicationFiled: June 3, 2002Publication date: December 4, 2003Inventors: Spyros A. Svoronos, H. Steven Crouch, Hassan El-Sayed El-Shall, Kevin W. Powers, Gary Wayne Scheiffele, Rachel Anna Worthen, Steven Robin Wright