Patents by Inventor Hassan KINGRAVI

Hassan KINGRAVI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240323270
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: May 31, 2024
    Publication date: September 26, 2024
    Applicant: Pindrop Security, Inc.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Patent number: 12015731
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: June 18, 2024
    Assignee: Pindrop Security, Inc.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Publication number: 20220337924
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Applicant: Pindrop Security, Inc.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Patent number: 11388490
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 12, 2022
    Assignee: PINDROP SECURITY, INC.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Publication number: 20210152897
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 20, 2021
    Inventors: Nick GAUBITCH, Scott STRONG, John CORNWELL, Hassan KINGRAVI, David DEWEY
  • Patent number: 10904643
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: January 26, 2021
    Assignee: Pindrop Security, Inc.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Patent number: 10685008
    Abstract: Systems and methods for classification using an explicit feature map or an approximate feature map based on a relative locality measure. In at least one embodiment, a method of authenticating a user operates data points having feature vectors pertaining to user events comprises selecting an approximate feature map based on a subset of features in each data point and a relative locality measure of a cluster including a plurality of the data points; mapping, to a feature space, the subset of features in each data point and a new data point pertaining to a phone call of the user using the selected approximate feature map; determining a classification of the new data point based on its relative locality measure with respect to a cluster in the feature space; storing the classification of the new data point in a memory device; and authenticating the user during the phone call.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: June 16, 2020
    Assignee: Pindrop Security, Inc.
    Inventors: Aditya Kurve, Hassan Kingravi
  • Patent number: 10666792
    Abstract: Methods and systems for detecting new calls from an existing spam or robocaller and aggregating calls that originate from the same infrastructure using a telephony honeypot are disclosed. An example method may receive a telephone call to a telephony honeypot and store metadata and a call audio recording associated with the telephone call. A transcript may be created of the call audio recording. Audio features may be extracted from the call audio recording. The transcript may be compared to other previously-received transcripts in order to determine a similarity between the call and previously-received calls. Audio features and metadata may also be compared to determine whether the call is similar to other previously-received calls. If a call is similar, the call may be identified with the same spam campaign or robocaller as the similar, previously-received call.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: May 26, 2020
    Assignee: Pindrop Security, Inc.
    Inventors: Aude Marzuoli, Hassan Kingravi, David Dewey
  • Patent number: 10606283
    Abstract: According to an embodiment, there is provided an onboard integrated computational system for an unmanned aircraft system (“Stabilis” autopilot). This is an integrated suite of hardware, software, and data-to-decisions services that are designed to meet the needs of business and research developers of UAS. Stabilis is designed to accelerate the development of any UAS platform and avionics system; it does so with hardware modularity and software adaptation. The Stabilis offers multiple technological advantages technological advantages including: Plug-and-adapt functionality; Data-to-decisions capability; and, On board parallelization capability.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: March 31, 2020
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Girish Vinayak Chowdhary, Jacob Stockton, Hassan Kingravi
  • Publication number: 20190238956
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Nick GAUBITCH, Scott STRONG, John CORNWELL, Hassan KINGRAVI, David DEWEY
  • Patent number: 10257591
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: April 9, 2019
    Assignee: Pindrop Security, Inc.
    Inventors: Nick Gaubitch, Scott Strong, John Cornwell, Hassan Kingravi, David Dewey
  • Publication number: 20180239365
    Abstract: According to an embodiment, there is provided an onboard integrated computational system for an unmanned aircraft system (“Stabilis” autopilot). This is an integrated suite of hardware, software, and data-to-decisions services that are designed to meet the needs of business and research developers of UAS. Stabilis is designed to accelerate the development of any UAS platform and avionics system; it does so with hardware modularity and software adaptation. The Stabilis offers multiple technological advantages technological advantages including: Plug-and-adapt functionality; Data-to-decisions capability; and, On board parallelization capability.
    Type: Application
    Filed: August 15, 2016
    Publication date: August 23, 2018
    Inventors: GIRISH VINAYAK CHOWDHARY, JACOB STOCKTON, HASSAN KINGRAVI
  • Publication number: 20180041823
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: May 19, 2017
    Publication date: February 8, 2018
    Applicant: PINDROP SECURITY, INC.
    Inventors: Nick GAUBITCH, Scott STRONG, John CORNWELL, Hassan KINGRAVI, David DEWEY