Patents by Inventor Hatem Ibrahim Zeine

Hatem Ibrahim Zeine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10517127
    Abstract: Embodiments of the present disclosure describe techniques for encoding beacon signals in wireless power delivery environments. More specifically, techniques are disclosed for encoding beacon signals to isolate client devices for wireless power delivery in wireless power delivery environments. The beacon signals can be encoded or modulated with a transmission code that is provided to selected clients in the wireless power delivery environment. In this manner, beacon signals from the select clients can be identified and the corresponding client devices isolated for wireless power delivery. In some embodiments, the transmission code can be a pseudorandom sequence that is used by the wireless power delivery clients to encode transmitted beacon signals.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 24, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Prithvi Shylendra, Anas Alfarra
  • Publication number: 20190306735
    Abstract: For determining operational status of components of a wireless signal transmission environment, a signal is received from a client power receiver (CPR), and at least one waveform characteristic value of the signal is calculated. Based on the determined waveform characteristic value(s), a current transceiver system operational status is computed for the CPR at a current location. The determined current transceiver system operational status is compared with a prior-stored last known good transceiver system operational status for the CPR at the current location, and it is determined if, as a result of the comparing, the current transceiver system operational status matches the prior-stored last known good transceiver system operational status for the CPR at the current location. Determining a presence or an absence of the match facilitates identifying one of a presence and an absence of: functional problem(s) in: at least one of the transceiver system and the CPR.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 3, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Patent number: 10425131
    Abstract: A method of operating a transceiver system includes receiving, from a client power receiver, a signal at a plurality of antenna elements of an antenna array. The method also includes determining, by at least one of the antenna array and a processor of the transceiver system, and based at least in part on a fixed geometry of the plurality of antenna elements, a value of at least one waveform characteristic of the received signal. The method further includes computing, by the processor and based on the determined value of the at least one waveform characteristic, a transmission path of the signal from the client power receiver to each antenna element. The method also includes, assigning, by the processor and based on the computed transmission path, a location of the client power receiver in a wireless data transmission and power delivery environment.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: September 24, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Patent number: 10424972
    Abstract: Systems and methods for leveraging multipath wireless transmissions for high data rate communication and charging devices within multipath vehicle environments are described. The techniques include deploying a wireless charger, including an array of antennas, within a vehicle interior. The wireless charger may detect an incoming signal from a client device. Each antenna in the array may determine an offset for the received signal, which is then used to tune parameters for each antenna individually. Upon transmission, the resulting signal is directionally biased toward the least lossy pathways between the device and the charger. These pathways avoid passengers and other sources of signal attenuation. Thus, for a given total power envelope, a greater total signal amplitude may be delivered to the device, with reduced exposure to any occupants of the vehicle. Additionally, the interior of the vehicle may be provisioned to help improve multipath focusing of transmissions.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 24, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi
  • Patent number: 10418861
    Abstract: Various embodiments of the present technology relate generally to wireless power systems. More specifically, some embodiments relate to the use of time reversal techniques utilizing time diversity (e.g., different multipath arrivals at the same antenna) to achieve coherency from the same transmission node. For example, instead of initiating outgoing transmissions (e.g., power signals) at the same time, various embodiments can initiate the outgoing signals from the various antennas in a staggered timing that is a reversal of the arrival times of an incoming signal. As a result of staggering the start of the outgoing signals, the signals will arrive at the destination at approximately the same time even though they have traveled different paths having different propagation delays.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 17, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Publication number: 20190207430
    Abstract: Various embodiments use prospective synchronization signals early in the signal reception to adjust framing cycles of communication nodes to reduce jitter. Some embodiments temporarily suspend messaging between existing nodes of a communication system while instructing new nodes to generate a beacon according to a beacon schedule. The system can monitor for responses from the new node and calculate a timing error. This timing error can be sent to the new node to adjust cycle framing. In some embodiments, these techniques for timing the receive (Rx) and transmission (Tx) cycles of a node (e.g., a client wireless antenna system) can be utilized such that the radio frequency (RF) energy received between RF energy cycles can be delivered directly to the node, stored in a client's battery by a wireless charging system, enhance the Rx signal opportunities, or make the integrity of the delivered Tx signal more efficient.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: Ossia Inc.
    Inventors: Scott Elliott, Hatem Ibrahim Zeine
  • Publication number: 20190199145
    Abstract: Various embodiments of the present technology relate generally to wireless power systems. More specifically, some embodiments relate to the use of time reversal techniques utilizing time diversity (e.g., different multipath arrivals at the same antenna) to achieve coherency from the same transmission node. For example, instead of initiating outgoing transmissions (e.g., power signals) at the same time, various embodiments can initiate the outgoing signals from the various antennas in a staggered timing that is a reversal of the arrival times of an incoming signal. As a result of staggering the start of the outgoing signals, the signals will arrive at the destination at approximately the same time even though they have traveled different paths having different propagation delays.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Publication number: 20190148950
    Abstract: Embodiments of the present disclosure describe techniques for reducing human exposure to wireless energy in wireless power delivery environments. In some embodiments, a wireless power reception apparatus configured to receive wireless power from a wireless charging system in a wireless power delivery environment is disclosed. The wireless power reception apparatus includes a control system and an antenna array. In some embodiments, the control system is configured to dynamically adjust transmission and reception radiation patterns of the antenna array to reduce human exposure to wireless radio frequency (RF) energy.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi, Alireza Pourghorban Saghati, Anas Alfarra, Douglas Williams
  • Publication number: 20190140487
    Abstract: Systems and methods are described for operating a wireless power transmission system. The wireless power transmission system receives an encoded beacon signal delivered from and initiated by a wireless power receiver client configured to receive wireless power from the wireless power transmission system. The wireless power transmission system also delivers wireless power to the wireless power receiver client and simultaneously detects for additional encoded beacon signals delivered from and initiated by additional wireless power receiver clients.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 9, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Dale Donald Mayes, Ahmad Moghaddam
  • Patent number: 10277078
    Abstract: Various embodiments of the present technology generally relate to wireless power transmitter and antenna configurations for transmitting wireless power to one or more clients. In some embodiments, the wireless power transmitter includes boards having multiple antennas (i.e., an Antenna Matrix Board(s) (AMB)). The antennas can be on one side of each AMB board, while the control and power circuitry are on the reverse side. The antennas emit electromagnetic (EM) radiant energy that the client(s) receive, store, and/or use for communication with the charger or for the client device battery charging process. The antenna boards can be arranged in a configuration to increase (e.g., optimize) the amount of power transmitted to client(s). In various embodiments, the boards are arranged in polygonal shape as individual flat panels physically coupled to a support structure and attached to the CCB by plug in multiple pin connectors unique in mechanical design.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: April 30, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Luis Perez, Dale Mayes, Anthony L. Johnson, Prithvi Shylendra, Alireza Pourghorban Saghati, Douglas Wayne Williams
  • Patent number: 10257731
    Abstract: For determining operational status of components of a wireless signal transmission environment, a signal is received from a client power receiver (CPR), and at least one waveform characteristic value of the signal is calculated. Based on the determined waveform characteristic value(s), a current transceiver system operational status is computed for the CPR at a current location. The determined current transceiver system operational status is compared with a prior-stored last known good transceiver system operational status for the CPR at the current location, and it is determined if, as a result of the comparing, the current transceiver system operational status matches the prior-stored last known good transceiver system operational status for the CPR at the current location. Determining a presence or an absence of the match facilitates identifying one of a presence and an absence of: functional problem(s) in: at least one of the transceiver system and the CPR.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: April 9, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Patent number: 10256550
    Abstract: Systems and methods are described for operating a waveguide device having multiple slots, each slot having one or more switches. The waveguide device receives, from a circuit controller, an instruction to dynamically deactivate one or more switches to open selected ones of the multiple slots at determined locations in the waveguide device and to dynamically activate one or more switches to close selected ones of the multiple slots at determined locations in the waveguide device, wherein the circuit controller is communicatively coupled to each of the switches on the waveguide device. The waveguide device transmits a wave in a target direction based at least in part on the locations of the open selected ones of the multiple slots at the determined locations in the waveguide device.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: April 9, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati, Prithvi Shylendra
  • Patent number: 10250084
    Abstract: Systems and methods are described for receiving wireless power and providing wired power. In some embodiments, a predictive phase estimation apparatus comprises a transceiver module configured to receive a plurality of beaconing signals from a wireless client during a beacon cycle. The predictive phase estimation apparatus also comprises a phase compensation module configured to store the received plurality of beaconing signals, a phase predictor module is coupled to the transceiver module and configured to calculate predictive phases based on the received plurality of beaconing signals and based on beaconing signals received from the wireless client prior to the beacon cycle, and a signal converter coupled to the transceiver module. The signal converter is configured to form transmission signals based on the predictive phases and supply the transmission signals to the transceiver module. The transceiver module also transmits the transmission signals for delivery of wireless power to the wireless client.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: April 2, 2019
    Assignee: Ossia Inc.
    Inventors: Ahmad Moghaddam, Hatem Ibrahim Zeine
  • Publication number: 20190097464
    Abstract: Various embodiments of the present technology relate generally to wireless power systems. More specifically, some embodiments relate to identifying and correcting failures within wireless power systems (or any other system that is subject to design/device fault). Some embodiments monitor multiple states/control signals in a wireless power transmission system having an array of antenna. A determination can be made as to whether each of the multiple states are in an expected configuration (or make the expected transitions implying different states during normal operations). For examples, this can include identifying whether each antenna in the array of antennas is in a transmitting or receiving state. Any problems (e.g., timing problems, antennas stuck in a Tx or Rx state, controller malfunction, etc.) within the system can be detected by analyzing the multiple states/control signals and compare them against expected behavior/configuration.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 28, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam
  • Publication number: 20190097465
    Abstract: Systems and methods are described for transmitting and receiving wireless power. In some embodiments, a wireless power transmission system comprises an antenna array comprising a plurality of antennas and a transceiver module configured to receive a plurality of beaconing signals via the antenna array from a wireless client during a beacon cycle. The system also comprises a controller configured to measure a phase of each of the plurality of beaconing signals and determine a transmit phase configuration for each of the antennas, and a transceiver module configured to send signals to the antenna array based on the transmit phase configuration for delivery of wireless power to the wireless client.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati
  • Patent number: 10230276
    Abstract: Various embodiments use prospective synchronization signals early in the signal reception to adjust framing cycles of communication nodes to reduce jitter. Some embodiments temporarily suspend messaging between existing nodes of a communication system while instructing new nodes to generate a beacon according to a beacon schedule. The system can monitor for responses from the new node and calculate a timing error. This timing error can be sent to the new node to adjust cycle framing. In some embodiments, these techniques for timing the receive (Rx) and transmission (Tx) cycles of a node (e.g., a client wireless antenna system) can be utilized such that the radio frequency (RF) energy received between RF energy cycles can be delivered directly to the node, stored in a client's battery by a wireless charging system, enhance the Rx signal opportunities, or make the integrity of the delivered Tx signal more efficient.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 12, 2019
    Assignee: Ossia Inc.
    Inventors: Scott Elliott, Hatem Ibrahim Zeine
  • Publication number: 20190067825
    Abstract: Systems and methods are described for operating a waveguide device having multiple slots, each slot having one or more switches. The waveguide device receives, from a circuit controller, an instruction to dynamically deactivate one or more switches to open selected ones of the multiple slots at determined locations in the waveguide device and to dynamically activate one or more switches to close selected ones of the multiple slots at determined locations in the waveguide device, wherein the circuit controller is communicatively coupled to each of the switches on the waveguide device. The waveguide device transmits a wave in a target direction based at least in part on the locations of the open selected ones of the multiple slots at the determined locations in the waveguide device.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Seyed Ali Malek Abadi, Alireza Pourghorban Saghati, Prithvi Shylendra
  • Publication number: 20190020199
    Abstract: Embodiments of the present disclosure describe removably attachable portable device apparatuses with integrated wireless power receiving facilities (also referred to as wireless power reception apparatuses herein). In some embodiments, a wireless power reception apparatus for a portable electronic device is described. The wireless power reception apparatus can include a housing, one or more antennas, and a wireless power receiver. The housing is configured to be removably attachable to the portable electronic device. The one or more antennas are situated on or within the housing and are configured to receive wireless power from a wireless charging (or wireless power transmission) system. The wireless power receiver is disposed within the housing and is configured to process the wireless power received via the one or more antennas and provide the received power to the portable electronic device via a power interface port.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 17, 2019
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi, Alireza Saghati, Anas Alfarra, Ben Renneberg
  • Patent number: 10181730
    Abstract: Embodiments of the present disclosure describe techniques for reducing human exposure to wireless energy in wireless power delivery environments. In some embodiments, a wireless power reception apparatus configured to receive wireless power from a wireless charging system in a wireless power delivery environment is disclosed. The wireless power reception apparatus includes a control system and an antenna array. In some embodiments, the control system is configured to dynamically adjust transmission and reception radiation patterns of the antenna array to reduce human exposure to wireless radio frequency (RF) energy.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 15, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Siamak Ebadi, Alireza Pourghorban Saghati, Anas Alfarra, Douglas Williams
  • Publication number: 20180338252
    Abstract: For determining operational status of components of a wireless signal transmission environment, a signal is received from a client power receiver (CPR), and at least one waveform characteristic value of the signal is calculated. Based on the determined waveform characteristic value(s), a current transceiver system operational status is computed for the CPR at a current location. The determined current transceiver system operational status is compared with a prior-stored last known good transceiver system operational status for the CPR at the current location, and it is determined if, as a result of the comparing, the current transceiver system operational status matches the prior-stored last known good transceiver system operational status for the CPR at the current location. Determining a presence or an absence of the match facilitates identifying one of a presence and an absence of: functional problem(s) in: at least one of the transceiver system and the CPR.
    Type: Application
    Filed: April 9, 2018
    Publication date: November 22, 2018
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Ahmad Moghaddam