Patents by Inventor Hatem Zeine

Hatem Zeine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10700556
    Abstract: Techniques are described herein for enabling, among other features, more effective wireless charging of devices in wireless power delivery environments through enhanced signal focusing over multiple paths in a multipath wireless power delivery environment. More specifically, the systems and methods discussed herein describe techniques for increasing effective charging of devices, including enhanced ability to focus charging utilizing multiple pathways, phase detection of incoming signals allowing for movement detection in a wireless environment, phase synchronization, and directional arrays.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: June 30, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi
  • Publication number: 20200185972
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Applicant: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 10658882
    Abstract: Techniques are described herein for determining which power receiver clients are within a set network and limiting power transmission to these select clients. Ignoring some power requests frees up the wireless power transmission system to preferentially supply power to wireless power receiver clients that are determined to be of higher importance. This may be particularly beneficial within a home or business setting where the wireless power transmission system coverage region extends into locations where unknown devices are located.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: May 19, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10637289
    Abstract: Systems and methods for improvement in transmission antenna design and, more particularly, for rapid determine phase determination of incoming signals are described herein. In some embodiments, a phase detection system is described. The phase detection system includes a phase detection apparatus and a control system. The phase detection apparatus includes a phase shifting element and a phase detector element. The phase shifting element is configured to phase-shift a reference signal multiple times per detection cycle. The phase detector element is configured to compare an incoming signal to multiple phases of the phase-shifted reference signal during the detection cycle, and generate an output indicating a relative phase difference between the incoming signal and the phase-shifted reference signal for each of the multiple phases. The control system is configured to determine a relative phase of the incoming signal based, at least in part, on the outputs.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: April 28, 2020
    Assignee: Ossia Inc.
    Inventors: Douglas Williams, Rasha Qamheyeh, Hatem Zeine, Dale Donald Mayes
  • Publication number: 20200119593
    Abstract: The disclosed technology relates to antenna configurations for wireless power transmission and supplemental visual signals. In some implementations, the disclosed technology includes a wireless power transmitter with boards that have multiple antennas physically coupled to the board. In some implementations, the antennas boards are arranged in a polygonal configuration (e.g., star shape). Additionally, in some implementations, the antennas can have different polarization configurations.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 16, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Iranpour Khormaei, Fady El-Rukby, Alireza Saghati, Luis Perez, Prithvi Shylendra, Robert Smith
  • Publication number: 20200091773
    Abstract: Systems and methods are described for receiving wireless power and providing wired power. In some embodiments, a wirelessly chargeable battery apparatus comprises a housing and one or more antennas situated within the housing. The antennas are configured to receive wireless radio frequency (RF) power from a wireless charging system. One or more electronic circuit boards (PCBs) situated within the housing are included, and the one or more electronic circuit boards are configured to convert the received wireless RF power to direct current (DC) power. The apparatus also comprises one or more batteries configured to store the DC power and a port configured to couple with a cable external to the housing and to provide stored DC power from the one or more batteries to the cable.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 19, 2020
    Applicant: Ossia Inc.
    Inventors: Benjamin Renneberg, Dale Mayes, Fady El-Rukby, Hatem Zeine
  • Patent number: 10587154
    Abstract: Techniques are described herein for utilizing power requirements of a device in order to schedule wireless power delivery in wireless power delivery environments. In some embodiments, the techniques can alternatively or additionally employ advanced usage based power models to schedule wireless power delivery in wireless power delivery environments. For embodiments where device usage information is utilized, various means of collecting and analyzing the usage data may be employed. Furthermore, in some embodiments, some of the usage data may be ignored in order to ensure that the usage models for the device are not polluted with abnormal or detrimental data.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 10, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes, Fady El-Rukby, Douglas Williams, Prithvi Shylendra
  • Patent number: 10587155
    Abstract: Techniques are described herein for delivering retrodirective wireless radio frequency (RF) power to a client device in a wireless power delivery environment. More specifically, embodiments of the present disclosure describe techniques for delivering directed wireless RF power to a client device in a wireless power delivery environment via multiple wireless power signals over multiple wireless power delivery paths. The client device includes one or more RF client transceivers that collectively have a radiation and reception pattern in a three-dimensional space proximate to the client device. The techniques identify the wireless power delivery paths over which wireless power signals can be delivered and deliver the wireless power in a manner that matches the client radiation and reception pattern in the three-dimensional space proximate to the client device.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: March 10, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Alireza Pourghorban Saghati
  • Patent number: 10574081
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 25, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 10566845
    Abstract: Techniques for automated clock synchronization and control are discussed herein. For example, the techniques can include monitoring of transmissions for ‘known’ events and identifying timing or frequencies of such events. Deviations in the timing or frequencies of the events from expected times or frequencies may indicate that wireless power transmission system and receiver clocks are not synchronized. The deviations can be used to synchronize the clock for optimum wireless power transfer. Techniques are also described for enhancing clock control mechanisms to provide additional means for managing the adjustments of the clocks, as well as for enabling wireless power transmission systems to mimic client clock offsets for effective synchronization of events (e.g., beacon signals).
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 18, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10566852
    Abstract: Techniques for establishing RF power connections with wireless power transmission systems in multi-wireless power transmission system environments are described herein. More specifically, the techniques describe a method for establishing a connection with an optimal wireless power transmission system when multiple wireless power transmission systems are within range.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 18, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10566846
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: February 18, 2020
    Assignee: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 10559275
    Abstract: Techniques are described herein for inferring a status of a primary battery for an electronic device in a wireless power delivery environment. In some embodiments, the status of the primary battery can be inferred, without any feedback regarding a status of the primary battery, based on a wireless charging profile of the primary battery and power usage characteristics that are monitored. In some embodiments, the wireless power transmission system utilizes the information inferred about a particular wireless device's primary battery to control or allocate how much wireless power is allocated to a particular wireless power receiver client embedded and/or otherwise associated with the wireless device.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10559982
    Abstract: Various techniques are described herein for efficiently transmitting and receiving wireless power and/or data signals. In one example, a transmitter includes multiple antennas, a dielectric material in proximity to the multiple antennas, and multiple scattering elements embedded in the dielectric material. One or more of the multiple scattering elements are configured to be excited by one or more signals emitted by the multiple antennas.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: February 11, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Douglas Wayne Williams
  • Publication number: 20200044489
    Abstract: Techniques are described herein for determining the distance from, to or between radiating objects in a multipath environment. For example, embodiments of the present disclosure describe techniques for determining the distance between an antenna array system (or wireless charger) and a wireless power receiver in a multipath wireless power delivery environment. Calibration techniques are disclosed that account for and/or otherwise quantify the multipath effects of the wireless power delivery environment. In some embodiment, the quantified multipath effects modify the Friis transmission equation, thereby facilitating the distance determination in multipath environments.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Douglas Wayne Williams, Anas Alfarra
  • Publication number: 20200021142
    Abstract: A transmitter assembly is useful in optimizing in the delivery of wireless power to a plurality of receivers. Each receiver measures its own battery need for power and transmits that measurement as a request to the transmitter. The transmitter is configured to normalize and compare battery need requests. The transmitter then allocates pulses of wireless power among the requesting receivers according to their battery need.
    Type: Application
    Filed: June 3, 2019
    Publication date: January 16, 2020
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Thomas H. Wilson, K. Kenneth Clark
  • Patent number: 10523034
    Abstract: Embodiments of the present disclosure describe various techniques for integrating wireless power facilities or functionality into an existing object or device via embedded or deposited surface antennas. More specifically, the techniques described herein provide for the ability to embed and/or otherwise deposit spatially-arrayed adaptively-phased antennas on the surface of an existing object or device such that the antennas are exposed to air and/or otherwise lacking significant interference. In some embodiments, a wireless power control system is operatively coupled to the antennas to independently control phases of the phased of the antennas in a wireless power delivery environment.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: December 31, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Alireza Saghati
  • Publication number: 20190386521
    Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Applicant: OSSIA INC.
    Inventor: Hatem Zeine
  • Patent number: 10498177
    Abstract: Techniques are described herein for load balancing wireless power receiver clients over multiple wireless power transmission systems in a wireless power delivery environment. In some embodiments, a method is described. The method includes identifying transmitter load information associated with at least two wireless power transmission systems of the multiple wireless power transmission systems, detecting a load imbalance between the at least two wireless power transmission systems based, at least in part, on the transmitter load information, and determining one or more operations for improving the load imbalance. The method further includes directing one or more of the at least two wireless power transmission systems to perform the one or more operations.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: December 3, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes
  • Patent number: 10454316
    Abstract: The disclosed technology relates to antenna configurations for wireless power transmission and supplemental visual signals. In some implementations, the disclosed technology includes a wireless power transmitter with boards that have multiple antennas physically coupled to the board. In some implementations, the antennas boards are arranged in a polygonal configuration (e.g., star shape). Additionally, in some implementations, the antennas can have different polarization configurations.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: October 22, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Siamak Ebadi, Iranpour Khormaei, Fady El-Rukby, Alireza Saghati, Luis Perez, Prithvi Shylendra, Robert Smith