Patents by Inventor Haw-Ching Yang

Haw-Ching Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11745267
    Abstract: An additive manufacturing (AM) method is provided. The method includes performing a laser powder bed fusion (L-PBF) process on the powder layer. Then, a first surface roughness value of the powder layer after the L-PBF process is obtained to generate a first surface profile. An absorptivity and a set of re-melting process parameters data are used to perform a heat transfer simulation. A second surface profile of the powder layer after laser re-melting is obtained by using the first surface profile and a low-pass filter. Then, the set of re-melting process parameters data is adjusted iteratively to perform the heat transfer simulation until a second surface roughness value predicted from the second surface profile is smaller than or equal to a surface roughness threshold, thereby obtaining optimal values of re-melting process parameters for performing a re-melting process to reduce a surface roughness of a powder layer after the L-PBF process.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: September 5, 2023
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Hong-Chuong Tran, Yu-Lung Lo, Haw-Ching Yang, Fan-Tien Cheng
  • Patent number: 11679565
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed during a fabrication of each of the workpiece products; performing photography on each of the melt pools on the powder bed during the fabrication of each of the workpiece products; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: June 20, 2023
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Patent number: 11673339
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed; performing photography on each of the melt pools on the powder bed; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; first converting each of the workspace images to a gray level co-occurrence matrix (GLCM); building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: June 13, 2023
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Publication number: 20220314552
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed; performing photography on each of the melt pools on the powder bed; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; first converting each of the workspace images to a gray level co-occurrence matrix (GLCM); building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Haw-Ching YANG, Yu-Lung LO, Hung-Chang HSIAO, Shyh-Hau WANG, Min-Chun HU, Chih-Hung HUANG, Fan-Tien CHENG
  • Publication number: 20220297383
    Abstract: An additive manufacturing (AM) method includes using an AM tool to fabricate a plurality of workpiece products; measuring qualities of the first workpiece products respectively; performing a temperature measurement on each of the melt pools on the powder bed during a fabrication of each of the workpiece products; performing photography on each of the melt pools on the powder bed during the fabrication of each of the workpiece products; extracting a length and a width of each of the melt pools; performing a melt-pool feature processing operation; building a conjecture model by using a plurality of sets of first process data and the actual metrology values of the first workpiece products in accordance with a prediction algorithm; and predicting a virtual metrology value of the second workpiece product by using the conjecture model based on a set of second process data.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Patent number: 11383446
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: July 12, 2022
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Patent number: 11383450
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: July 12, 2022
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Yu-Lung Lo, Hung-Chang Hsiao, Shyh-Hau Wang, Min-Chun Hu, Chih-Hung Huang, Fan-Tien Cheng
  • Publication number: 20210402476
    Abstract: An additive manufacturing (AM) method is provided. The method includes performing a laser powder bed fusion (L-PBF) process on the powder layer. Then, a first surface roughness value of the powder layer after the L-PBF process is obtained to generate a first surface profile. An absorptivity and a set of re-melting process parameters data are used to perform a heat transfer simulation. A second surface profile of the powder layer after laser re-melting is obtained by using the first surface profile and a low-pass filter. Then, the set of re-melting process parameters data is adjusted iteratively to perform the heat transfer simulation until a second surface roughness value predicted from the second surface profile is smaller than or equal to a surface roughness threshold, thereby obtaining optimal values of re-melting process parameters for performing a re-melting process to reduce a surface roughness of a powder layer after the L-PBF process.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 30, 2021
    Inventors: Hong-Chuong TRAN, Yu-Lung LO, Haw-Ching YANG, Fan-Tien CHENG
  • Publication number: 20200247064
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventors: Haw-Ching YANG, Yu-Lung LO, Hung-Chang HSIAO, Shyh-Hau WANG, Min-Chun HU, Chih-Hung HUANG, Fan-Tien CHENG
  • Patent number: 10695884
    Abstract: A tool wear monitoring and predicting method is provided, and uses a hybrid dynamic neural network (HDNN) to build a tool wear prediction model. The tool wear prediction model adopts actual machining (cutting) conductions, sensing data detected at the current tool run of operation and the predicted tool wear value at the previous tool run of operation to predict a predicted tool wear value at the current tool run. A cyber physical agent (CPA) is adopted for simultaneously monitoring and predicting tool wear values of plural machines of the same machine type.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: June 30, 2020
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Haw-Ching Yang, Fan-Tien Cheng
  • Publication number: 20200147893
    Abstract: An additive manufacturing (AM) system, an AM method, and an AM feature extraction method are provided. The AM system includes an AM tool, a product metrology system, an in-situ metrology system, a virtual metrology (VM) system, a compensator, a track planner, a controller, a simulator and an augmented reality (AR) device. The simulator is used to find feasible parameter ranges, while the AR device is used to support operations and maintenance of the AM tool. The product metrology system, the in-situ metrology system and the VM system are integrated to estimate the variation of material on a powder bed of the AM tool. The compensator is used for compensating the process variation by adjusting process parameters. The product metrology system is used to measure the quality of products. The in-situ metrology system is used to collect features of melt pools on the powder bed.
    Type: Application
    Filed: October 2, 2019
    Publication date: May 14, 2020
    Inventors: Haw-Ching YANG, Yu-Lung LO, Hung-Chang HSIAO, Shyh-Hau WANG, Min-Chun HU, Chih-Hung HUANG, Fan-Tien CHENG
  • Patent number: 10413984
    Abstract: A method for predicting precision of an electrical discharge machine is provided. In the method, plural sets of process data are obtained while the electrical discharge machine processes workpiece samples. Process features are established based on the process data. Each of the workpiece samples with respect to each of at least one measurement item is measured by using a metrology tool, thereby obtaining measurement values of the workpiece samples with respect to each measurement item. A correlation analysis operation is performed to obtain correlation coefficients. At least one key feature is selected from the process features as representative according to the correlation coefficients. The measurement values of the workpiece samples with respect to each measurement item, and the sets of process data corresponding to the key features are used to build a predictive model for predicting the precision of the electrical discharge machine.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 17, 2019
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Haw-Ching Yang, Min-Nan Wu, Cheng-Yen Chen, Wen-Chieh Wu, Chia-Ming Jan
  • Patent number: 10345794
    Abstract: A product quality prediction method for mass customization is provided. When a production system has a status change, data of sets of process parameters and actual measurement values of workpiece samples processed before the status change occurs, and data of sets of process parameters and actual measurement values of few workpiece samples processed after the status change occurs are used for build or retrain a prediction model, thereby predicting a metrology value of a next workpiece.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: July 9, 2019
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Chun-Fang Chen, Hao Tieng, Fan-Tien Cheng, Haw-Ching Yang
  • Publication number: 20180275630
    Abstract: A system and a method for machine tool maintenance and repair is provided for allowing an expert at a remote site to collaborate with an on-site personnel to maintain or repair a physical machine in a manner of combining the physical machine with a virtual reality (VR) model or an augmented reality (AR) model. Two maintenance modes are provided, which are an augmented virtual reality model guided by a standard operation procedure (referred as a SOP-AVR mode), and an augmented virtual reality model guided by an expert operation procedure (referred as an EG-AVR mode). A cyber physical agent (CPA) is adopted for simultaneously monitoring and repairing plural machines of the same machine type.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 27, 2018
    Inventors: Yung-Chou KAO, Haw-Ching YANG, Fan-Tien CHENG
  • Publication number: 20180272491
    Abstract: A tool wear monitoring and predicting method is provided, and uses a hybrid dynamic neural network (HDNN) to build a tool wear prediction model. The tool wear prediction model adopts actual machining (cutting) conductions, sensing data detected at the current tool run of operation and the predicted tool wear value at the previous tool run of operation to predict a predicted tool wear value at the current tool run. A cyber physical agent (CPA) is adopted for simultaneously monitoring and predicting tool wear values of plural machines of the same machine type.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 27, 2018
    Inventors: Haw-Ching YANG, Fan-Tien CHENG
  • Patent number: 10042351
    Abstract: A computer-implemented method is provided. First, channel data is obtained, and whether the channel data complies with a predetermined condition of an event is determined. If the channel data complies with the predetermined condition, the channel data is recorded into a database according to a sampling frequency and a recording duration. The channel data corresponding to the event is obtained from the database, and is displayed according to a user operation. A replay frequency and stepping time interval corresponding to the user operation are obtained. The recording duration is adjusted according to the replay frequency, and the sampling frequency is adjusted according to the stepping time interval.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: August 7, 2018
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Haw-Ching Yang, Min-Nan Wu
  • Publication number: 20180188717
    Abstract: A product quality prediction method for mass customization is provided. When a production system has a status change, data of sets of process parameters and actual measurement values of workpiece samples processed before the status change occurs, and data of sets of process parameters and actual measurement values of few workpiece samples processed after the status change occurs are used for build or retrain a prediction model, thereby predicting a metrology value of a next workpiece.
    Type: Application
    Filed: October 26, 2017
    Publication date: July 5, 2018
    Inventors: Chun-Fang CHEN, Hao TIENG, Fan-Tien CHENG, Haw-Ching YANG
  • Publication number: 20180161900
    Abstract: A method for predicting precision of an electrical discharge machine is provided. In the method, plural sets of process data are obtained while the electrical discharge machine processes workpiece samples. Process features are established based on the process data. Each of the workpiece samples with respect to each of at least one measurement item is measured by using a metrology tool, thereby obtaining measurement values of the workpiece samples with respect to each measurement item. A correlation analysis operation is performed to obtain correlation coefficients. At least one key feature is selected from the process features as representative according to the correlation coefficients. The measurement values of the workpiece samples with respect to each measurement item, and the sets of process data corresponding to the key features are used to build a predictive model for predicting the precision of the electrical discharge machine.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Haw-Ching YANG, Min-Nan WU, Cheng-Yen CHEN, Wen-Chieh WU, Chia-Ming JAN
  • Publication number: 20170322547
    Abstract: A processing apparatus includes a central control unit, and a processing quality prediction unit, a processing unit, and a tool compensation unit which are respectively connected with the central control unit electrically. The processing quality prediction unit implements a virtual processing quality prediction method to predict the processing quality of the workpiece, output an accurate data of quality to the central control unit, and generate tool path for the processing unit to process the workpiece. The central control unit judges the data from the processing quality prediction unit and outputs the data to the tool compensation unit to calculate tool compensation data. The tool compensation unit provides the tool compensation data to the processing quality prediction unit to form a new processing path. Then the processing unit implements the compensated processing path to process the workpiece.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 9, 2017
    Inventors: PO CHENG SU, Hsin Hong Hou, Fan Tien Cheng, Haw Ching Yang, Hao Tieng
  • Publication number: 20170323213
    Abstract: A digital marking processing apparatus includes a central control unit, and a processing quality prediction unit, a processing unit and a marking unit which are respectively connected with the central control unit electrically. The processing quality prediction unit can implement a virtual processing quality prediction method to predict the processing quality of the workpiece, output an accurate data of quality to the central control unit and generate tool path for the processing unit to process the workpiece. The central control unit is able to compile the data of quality from the processing quality in prediction unit into file information, so that the marking unit can then utilize the file information to correspondingly mark barcode or other digital pattern on the workpiece, which facilitate workpiece management and information disclosure.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 9, 2017
    Inventors: PO CHENG SU, Hsin Hong Hou, Fan Tien Cheng, Haw Ching Yang, Hao Tieng