Patents by Inventor Hayaki Teramoto
Hayaki Teramoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11969830Abstract: An aluminum alloy brazing sheet including a core material, a sacrificial material provided on one surface of the core material, a brazing filler material provided on the other surface side of the core material, and an intermediate layer provided between the core material and the brazing filler material. The core material contains Si: 0.30 to 1.00 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.60 to 1.20 mass %, Mg: 0.05 to 0.80 mass %, and Al. The sacrificial material contains Si: 0.10 to 1.20 mass %, Zn: 2.00 to 7.00 mass %, Mn: 0.40 mass % or less, and Al. The intermediate layer contains Si: 0.05 to 1.20 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.10 to 1.20 mass %, and Al.Type: GrantFiled: January 29, 2021Date of Patent: April 30, 2024Assignee: Kobe Steel, Ltd.Inventors: Tatsuki Hashimoto, Kenichiro Yoshida, Yuji Shibuya, Akihiro Tsuruno, Yoshikazu Miyano, Hajime Sugito, Michiyasu Yamamoto, Masayuki Makita, Arisu Fujii, Shin Takewaka, Hayaki Teramoto, Koichi Yamamoto, Toshihide Ninagawa
-
Publication number: 20230117687Abstract: An aluminum alloy brazing sheet including a core material, a sacrificial material provided on one surface of the core material, a brazing filler material provided on the other surface side of the core material, and an intermediate layer provided between the core material and the brazing filler material. The core material contains Si: 0.30 to 1.00 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.60 to 1.20 mass %, Mg: 0.05 to 0.80 mass %, and Al. The sacrificial material contains Si: 0.10 to 1.20 mass %, Zn: 2.00 to 7.00 mass %, Mn: 0.40 mass % or less, and Al. The intermediate layer contains Si: 0.05 to 1.20 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.10 to 1.20 mass %, and Al.Type: ApplicationFiled: January 29, 2021Publication date: April 20, 2023Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Tatsuki HASHIMOTO, Kenichiro YOSHIDA, Yuji SHIBUYA, Akihiro TSURUNO, Yoshikazu MIYANO, Hajime SUGITO, Michiyasu YAMAMOTO, Masayuki MAKITA, Arisu FUJII, Shin TAKEWAKA, Hayaki TERAMOTO, Koichi YAMAMOTO, Toshihide NINAGAWA
-
Patent number: 11045911Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg—Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.Type: GrantFiled: July 1, 2020Date of Patent: June 29, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11027373Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.Type: GrantFiled: June 30, 2020Date of Patent: June 8, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11020824Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.Type: GrantFiled: June 30, 2020Date of Patent: June 1, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11002498Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.Type: GrantFiled: December 28, 2015Date of Patent: May 11, 2021Assignees: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATIONInventors: Shigeki Nakanishi, Shohei Iwao, Masakazu Edo, Hayaki Teramoto, Manabu Hasegawa, Michiyasu Yamamoto, Shoei Teshima
-
Publication number: 20210001437Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg-Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg-Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.Type: ApplicationFiled: July 1, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Publication number: 20210001436Abstract: An aluminum alloy clad material having four layers includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material which clads the other surface thereof on one surface of the sacrificial material on an opposite side to the core material, the brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance, and satisfying (Bi+Mg)×Sr?0.1, Mg—Bi-based compounds contained in the brazing material with a diameter of 0.1-5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, and the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.1% to 0.7%, and a balance consisting of Al and inevitable impurities.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Publication number: 20210001434Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Publication number: 20210001435Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 10369665Abstract: This brazed structure includes a brazing sheet that has been brazed and that comprises: a core material comprising an aluminum alloy which contains 0.3-1.0 mass %, excluding 0.3 mass %, Si, 0.6-2.0 mass %, excluding 0.6 mass %, Mn, 0.3-1.0 mass %, excluding 0.3 mass %, Cu, and 0.15-0.5 mass %, excluding 0.15 mass %, Mg, with the remainder comprising Al and unavoidable impurities, and has an average crystal grain diameter of 50 ?m or larger and in which an Mg—Si intermetallic compound and an Al—Mg—Si—Cu intermetallic compound account for 40% or less of the grain boundaries; and, clad to the core material, a brazing material comprising an Al—Si alloy.Type: GrantFiled: March 24, 2014Date of Patent: August 6, 2019Assignees: KOBE STEEL, LTD., DENSO CORPORATIONInventors: Takahiro Izumi, Shimpei Kimura, Yuji Shibuya, Shoei Teshima, Hayaki Teramoto, Osamu Hakamata
-
Patent number: 10286496Abstract: A brazing sheet formed of an aluminum alloy and exhibiting excellent post-brazing strength, corrosion resistance and brazability with a thickness of less than 200 ?m is provided. The brazing sheet includes a core layer, a filler layer of an Al—Si based alloy on one side of the core layer, and a sacrificial layer on the other side of the core layer. The core layer includes more than 1.5 mass % and 2.5 mass % or less of Cu, 0.5 mass % to 2.0 mass % of Mn, Al, and inevitable impurities. The sacrificial layer includes 2.0 mass % to 7.0 mass % of Zn, more than 0.10 mass % and 3.0 mass % or less of Mg, Al, and inevitable impurities. The filler layer and the sacrificial layer each have a thickness of 15 ?m to 50 ?m. A total clad rate of the filler layer and the sacrificial layer is equal to or less than 50%.Type: GrantFiled: February 9, 2015Date of Patent: May 14, 2019Assignees: Kobe Steel, Ltd., DENSO CORPORATIONInventors: Shimpei Kimura, Akihiro Tsuruno, Takahiro Izumi, Yuji Shibuya, Hayaki Teramoto, Shoei Teshima, Manabu Hasegawa, Michiyasu Yamamoto
-
Patent number: 10280495Abstract: An aluminum alloy fin material for heat exchanger use having a 35 to 50 ?m thickness, a small springback at the time of corrugation, a suitable strength before brazing enabling easy fin formation, a high strength after brazing, and excellent erosion resistance, self corrosion resistance, and sacrificial anodic effect and a method of production of the same are provided. A fin material containing, by mass %, Si: 0.9 to 1.2%, Fe: 0.8 to 1.1%, Mn: 1.1 to 1.4%, and Zn: 0.9 to 1.1%, further limiting the impurity Mg to 0.05% or less, Cu to 0.03% or less, and ([Si]+[Fe]+2[Mn])/3 to 1.4% to 1.6%, and having a balance of unavoidable impurities and Al. A method of production prescribing hot rolling, cold rolling, intermediate annealing, and final cold rolling.Type: GrantFiled: June 4, 2013Date of Patent: May 7, 2019Assignees: DENSO CORPORATION, NOVELIS INC., NIPPON LIGHT METAL COMPANY, LTD.Inventors: Takanori Kokubo, Toshiya Anami, Hayaki Teramoto, Hideyuki Ota, Toshihide Ninagawa
-
Publication number: 20190118311Abstract: An aluminum alloy brazing sheet 1 characterized by comprising a core material 2, a brazing material 3 made of an Al—Si based alloy provided on one surface of the core material 2, a sacrificial material 4 provided on another surface of the core material 2, and an intermediate material 5 provided between the core material 2 and the sacrificial material 4; a plate thickness being less than 200 ?m; the core material 2 containing a predetermined amount of Mn and Cu, with a balance being Al and inevitable impurities; the sacrificial material 4 containing a predetermined amount of Zn and less than a predetermined amount of Mg, with a balance being Al and inevitable impurities; and the intermediate material 5 containing a predetermined amount of Mg with a balance being Al and inevitable impurities.Type: ApplicationFiled: March 9, 2017Publication date: April 25, 2019Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.), DENSO CORPORATIONInventors: Shimpei KIMURA, Yuji SHIBUYA, Akihiro TSURUNO, Hayaki TERAMOTO, Tetsuya YAMAMOTO, Kota HAGIHARA, Yosuke UCHIDA
-
Publication number: 20190084094Abstract: An aluminum alloy clad material includes: a core material; and a sacrificial anode material layer clad on one surface or both surfaces of the core material. Each of the core material and the sacrificial anode material layer has a predetermined composition. In the core material, the number density of an Al—Mn-based intermetallic compound having an equivalent circle diameter of 0.1 ?m or more is 1.0×105 particles/mm2 or more, and the number density of Al2Cu having an equivalent circle diameter of 0.1 ?m or more is 1.0×105 particles/mm2 or less. In the sacrificial anode material layer, the number density of a Mg—Si-based crystallized product having an equivalent circle diameter of 0.1 to 5.0 ?m is 100 to 150,000 particles/mm2, and the number density of a Mg—Si-based crystallized product having an equivalent circle diameter of more than 5.0 ?m and 10.0 ?m or less is 5 particles/mm2 or less.Type: ApplicationFiled: March 30, 2017Publication date: March 21, 2019Inventors: Hayaki Teramoto, Manabu Hasegawa, Michiyasu Yamamoto, Yosuke Uchida, Wataru Narita, Yoshihiko Kyou, Atsushi Fukumoto, Yoshiyuki Ooya
-
Patent number: 9751143Abstract: An aluminum alloy brazing sheet for heat exchangers has a core, a sacrificial material formed on one side of the core, and a brazing filler metal formed on the other side of the core. The core is made of an aluminum alloy containing Si, Cu, Mn, and Al. The sacrificial material is made of an aluminum alloy containing Si, Zn, Mg, and Al. The brazing filler metal is made of an aluminum alloy. The aluminum alloy brazing sheet for heat exchangers has a work hardening exponent n of not less than 0.05. The core has an average crystal grain size of not more than 10 ?m in a cross-section. The aluminum alloy brazing sheet for heat exchangers has excellent strength and corrosion resistance even when it is formed into a thin material and also has excellent high frequency weldability and weld cracking resistance during electric resistance welding.Type: GrantFiled: March 12, 2013Date of Patent: September 5, 2017Assignees: KOBE STEEL, LTD., DENSO CORPORATIONInventors: Shimpei Kimura, Toshiki Ueda, Takahiro Izumi, Haruyuki Konishi, Hayaki Teramoto, Osamu Hakamata, Michiyasu Yamamoto
-
Publication number: 20170232561Abstract: Disclosed is an aluminum alloy brazing sheet including a core material, a brazing filler material provided on one surface of the core material and formed of an Al—Si based alloy, and a sacrificial anode material provided on the other surface of the core material, the brazing sheet having a thickness of less than 200 ?m, wherein the core material includes more than 1.5% by mass and 2.5% or less by mass of Cu, and 0.5 to 2.0% by mass of Mn, with the balance being Al and inevitable impurities, wherein the sacrificial anode material includes 2.0 to 10.0% by mass of Zn, an Mg content in the sacrificial anode material being restricted to 0.10% or less by mass, with the balance being Al and inevitable impurities, and wherein each of the brazing filler material and the sacrificial anode material has a thickness thereof in a range of 15 to 50 ?m, and the total of cladding rates of the brazing filler material and sacrificial anode material is 50% or less.Type: ApplicationFiled: September 28, 2015Publication date: August 17, 2017Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.), DENSO CORPORATIONInventors: Shimpei KIMURA, Akihiro TSURUNO, Takahiro IZUMI, Yuji SHIBUYA, Hayaki TERAMOTO, Michiyasu YAMAMOTO, Manabu HASEGAWA, Shoei TESHIMA
-
Publication number: 20170173740Abstract: The present invention provides a brazing sheet formed of an aluminum alloy which exhibits excellent post-brazing strength, corrosion resistance and brazability even though its thickness is less than 200 ?m. Disclosed is a brazing sheet formed of an aluminum alloy including a core layer, a brazing filler layer provided on one side of the core layer and formed of an Al—Si based alloy, and a sacrificial layer provided on the other side of the core layer, the brazing sheet having a thickness of less than 200 ?m, wherein the core layer includes Cu: more than 1.5% by mass and 2.5% or less by mass and Mn: 0.5 to 2.0% by mass, with the balance being Al and inevitable impurities, the sacrificial layer includes Zn: 2.0 to 7.0% by mass and Mg: more than 0.10% by mass and 3.Type: ApplicationFiled: February 9, 2015Publication date: June 22, 2017Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), DENSO CORPORATIONInventors: Shimpei KIMURA, Akihiro TSURUNO, Takahiro IZUMI, Yuji SHIBUYA, Hayaki TERAMOTO, Shoei TESHIMA, Manabu HASEGAWA, Michiyasu YAMAMOTO
-
Publication number: 20160187079Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.Type: ApplicationFiled: December 28, 2015Publication date: June 30, 2016Applicants: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATIONInventors: Shigeki NAKANISHI, Shohei IWAO, Masakazu EDO, Hayaki TERAMOTO, Manabu HASEGAWA, Michiyasu YAMAMOTO, Shoei TESHIMA
-
Publication number: 20160031045Abstract: This brazed structure includes a brazing sheet that has been brazed and that comprises: a core material comprising an aluminum alloy which contains 0.3-1.0 mass %, excluding 0.3 mass %, Si, 0.6-2.0 mass %, excluding 0.6 mass %, Mn, 0.3-1.0 mass %, excluding 0.3 mass %, Cu, and 0.15-0.5 mass %, excluding 0.15 mass %, Mg, with the remainder comprising Al and unavoidable impurities, and has an average crystal grain diameter of 50 ?m or larger and in which an Mg—Si intermetallic compound and an Al—Mg—Si—Cu intermetallic compound account for 40% or less of the grain boundaries; and, clad to the core material, a brazing material comprising an Al—Si alloy.Type: ApplicationFiled: March 24, 2014Publication date: February 4, 2016Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD,), DENSO CORPORATIONInventors: Takahiro IZUMI, Shimpei KIMURA, Yuji SHIBUYA, Shoei TESHIMA, Hayaki TERAMOTO, Osamu HAKAMATA