Patents by Inventor Hayato OKAMOTO

Hayato OKAMOTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369477
    Abstract: A semiconductor device includes: a drift layer of a first conduction type provided in a semiconductor substrate having a first principal plane and a second principal plane opposed to the first principal plane; a first semiconductor layer of a second conduction type provided between the first principal plane of the semiconductor substrate and the drift layer and having impurity concentration higher than impurity concentration of the drift layer; a first buffer layer of a first conduction type provided between the second principal plane of the semiconductor substrate and the drift layer and having hydrogen-induced donors with impurity concentration higher than impurity concentration of the drift layer; and a second semiconductor layer of a first conduction type or a second conduction type provided between the second principal plane of the semiconductor substrate and the first buffer layer and having impurity concentration higher than impurity concentration of the drift layer, wherein the first buffer layer incl
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kakeru OTSUKA, Hayato OKAMOTO, Katsumi NAKAMURA, Koji TANAKA, Koichi NISHI
  • Patent number: 11799022
    Abstract: A semiconductor device includes: a drift layer of a first conduction type provided in a semiconductor substrate having a first principal plane and a second principal plane opposed to the first principal plane; a first semiconductor layer of a second conduction type provided between the first principal plane of the semiconductor substrate and the drift layer and having impurity concentration higher than impurity concentration of the drift layer; a first buffer layer of a first conduction type provided between the second principal plane of the semiconductor substrate and the drift layer and having hydrogen-induced donors with impurity concentration higher than impurity concentration of the drift layer; and a second semiconductor layer of a first conduction type or a second conduction type provided between the second principal plane of the semiconductor substrate and the first buffer layer and having impurity concentration higher than impurity concentration of the drift layer, wherein the first buffer layer incl
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 24, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kakeru Otsuka, Hayato Okamoto, Katsumi Nakamura, Koji Tanaka, Koichi Nishi
  • Publication number: 20230299191
    Abstract: According to the present disclosure, a semiconductor device includes a semiconductor substrate of a first conductivity type, in which a cell region, a ballast resistor region, and a termination region surrounding the ballast resistor region are defined, a first insulating film arranged on a front surface of the semiconductor substrate, having a first opening in the cell region, and having at least one second opening in the ballast resistor region, a second insulating film filled in the at least one second opening, a first impurity layer of a second conductivity type arranged on the front surface of the semiconductor substrate below the first opening, and a second impurity layer of the second conductivity type arranged on the front surface of the semiconductor substrate below the at least one second opening, a conductive film arranged from the front surface of the first opening of the semiconductor substrate to the termination region.
    Type: Application
    Filed: December 15, 2022
    Publication date: September 21, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yasuhiro YOSHIURA, Eiko OTSUKI, Hayato OKAMOTO
  • Publication number: 20230261056
    Abstract: To suppress an increase in RC-IGBT recovery loss. In a semiconductor device, an IGBT region includes a base layer of a second conductivity type in a surface layer of a drift layer, a diode region includes an anode layer of a second conductivity type in the surface layer of the drift layer, a termination region includes a well layer of the second conductivity type in the surface layer of the drift layer, an impurity concentration profile of the base layer and an impurity concentration profile of the anode layer in a direction along an upper surface of the drift layer cyclically fluctuate, and the impurity concentration profile of the base layer and the impurity concentration profile of the anode layer are different.
    Type: Application
    Filed: November 1, 2022
    Publication date: August 17, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shigeto HONDA, Yusuke FUKADA, Hayato OKAMOTO
  • Patent number: 11444156
    Abstract: Provided is a technique capable of improving performance of a semiconductor device. A semiconductor device includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type located on the first semiconductor region, third and fourth semiconductor regions of the second conductivity type, a fifth semiconductor region of the first conductivity type, and an electrode. The third semiconductor region is located on the second semiconductor region, and has a higher impurity concentration than the second semiconductor region. The fourth semiconductor region has a higher impurity concentration than the second semiconductor region, is located separately from the third semiconductor region in a planar view, and has contact with the second semiconductor region. The fifth semiconductor region is located on the second semiconductor region, and is located between the third and fourth semiconductor regions in a planar view.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: September 13, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hayato Okamoto, Ze Chen
  • Publication number: 20220115522
    Abstract: A semiconductor device includes: a drift layer of a first conduction type provided in a semiconductor substrate having a first principal plane and a second principal plane opposed to the first principal plane; a first semiconductor layer of a second conduction type provided between the first principal plane of the semiconductor substrate and the drift layer and having impurity concentration higher than impurity concentration of the drift layer; a first buffer layer of a first conduction type provided between the second principal plane of the semiconductor substrate and the drift layer and having hydrogen-induced donors with impurity concentration higher than impurity concentration of the drift layer; and a second semiconductor layer of a first conduction type or a second conduction type provided between the second principal plane of the semiconductor substrate and the first buffer layer and having impurity concentration higher than impurity concentration of the drift layer, wherein the first buffer layer incl
    Type: Application
    Filed: April 28, 2021
    Publication date: April 14, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kakeru OTSUKA, Hayato OKAMOTO, Katsumi NAKAMURA, Koji TANAKA, Koichi NISHI
  • Publication number: 20210036107
    Abstract: Provided is a technique capable of improving performance of a semiconductor device. A semiconductor device includes a first semiconductor region of a first conductivity type, a second semiconductor region. of a second conductivity type located on the first semiconductor region, third and fourth semiconductor regions of the second conductivity type, a fifth semiconductor region of the first conductivity type, and an electrode. The third semiconductor region is located on the second semiconductor region, and has a higher impurity concentration than the second semiconductor region. The fourth semiconductor region has a higher impurity concentration than the second semiconductor region, is located separately from the third semiconductor region in a planar view, and has contact with the second semiconductor region. The fifth semiconductor region is located on the second semiconductor region, and is located between the third and fourth semiconductor regions in a planar view.
    Type: Application
    Filed: April 24, 2020
    Publication date: February 4, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hayato OKAMOTO, Ze CHEN