Patents by Inventor Hazel B. Matthews

Hazel B. Matthews has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8074474
    Abstract: A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber in a treatment zone wherein the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Methods for producing optical fibers along nonlinear paths incorporating fluid bearings are also provided thereby allowing for increased vertical space for the fiber treatment zone.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 13, 2011
    Assignee: Corning Incorporated
    Inventors: Andrey V Filippov, Hazel B Matthews, III, Bruce Warren Reding, Bradley K Shepard, David Andrew Tucker
  • Patent number: 7565820
    Abstract: A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber within a treatment temperature range for a treatment time. Preferably also, the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Apparatus are also provided.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: July 28, 2009
    Assignee: Corning Incorporated
    Inventors: John D. Foster, Hazel B. Matthews, III
  • Publication number: 20090139270
    Abstract: A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber in a treatment zone wherein the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Methods for producing optical fibers along nonlinear paths incorporating fluid bearings are also provided thereby allowing for increased vertical space for the fiber treatment zone.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventors: Andrey V. Filippov, Hazel B. Matthews, III, Bruce Warren Reding, Bradley K. Shepard, David Andrew Tucker
  • Patent number: 7536076
    Abstract: Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 50 and 500 ppm by weight, said core further comprising chlorine and fluorine, wherein the average concentration of fluorine in said core is greater than the average concentration of alkali metal oxide in said core and the average concentration of chlorine in said core is greater than the average concentration of alkali metal oxide in said core; and a silica-based cladding surrounding and directly adjacent the core. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: May 19, 2009
    Assignee: Corning Incorporated
    Inventors: Rostislav Radievich Khrapko, Hazel B Matthews, III
  • Publication number: 20070297735
    Abstract: Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 50 and 500 ppm by weight, said core further comprising chlorine and fluorine, wherein the average concentration of fluorine in said core is greater than the average concentration of alkali metal oxide in said core and the average concentration of chlorine in said core is greater than the average concentration of alkali metal oxide in said core; and a silica-based cladding surrounding and directly adjacent the core. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained.
    Type: Application
    Filed: May 10, 2007
    Publication date: December 27, 2007
    Inventors: Rostislav Radievich Khrapko, Hazel B. Matthews
  • Patent number: 6813908
    Abstract: The invention includes inventive methods of treating a soot preform. One method includes heating a soot preform to a temperature of less than about 1000° C. and exposing the preform to a substantially halide free reducing agent. Preferred reducing agents include carbon monoxide and sulfur dioxide. Another inventive method of treating the preform includes exposing the preform, in a furnace, to a substantially non-chlorine containing atmosphere comprising carbon monoxide. The preform is heated to a temperature of at least about 1000° C. Preferably this method is incorporated into the process for making an optical fiber. An additional method of treating the preform includes doping the preform with fluorine and exposing the fluorine doped preform to a substantially chlorine free atmosphere comprising at least carbon monoxide at a temperature of at least 1100° C., thereby reacting excess oxygen present in the furnace.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 9, 2004
    Assignee: Corning Incorporated
    Inventors: Kintu O. Early, Claude E. Lacy, Susan L. Schiefelbein, Sabyasachi Sen, Wanda J. Walczak, Joseph M. Whalen, Tiffany L. James, Hazel B. Matthews, Chukwuemeka B. Onuh
  • Publication number: 20040013336
    Abstract: A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber within a treatment temperature range for a treatment time. Preferably also, the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Apparatus are also provided.
    Type: Application
    Filed: April 28, 2003
    Publication date: January 22, 2004
    Inventors: John D. Foster, Hazel B. Matthews
  • Publication number: 20020197035
    Abstract: The invention includes inventive methods of treating a soot preform. One method includes heating a soot preform to a temperature of less than about 1000 ° C. and exposing the preform to a substantially halide free reducing agent. Preferred reducing agents include carbon monoxide and sulfur dioxide. Another inventive method of treating the preform includes exposing the preform, in a furnace, to a substantially non-chlorine containing atmosphere comprising carbon monoxide. The preform is heated to a temperature of at least about 1000° C. Preferably this method is incorporated into the process for making an optical fiber. An additional method of treating the preform includes doping the preform with fluorine and exposing the fluorine doped preform to a substantially chlorine free atmosphere comprising at least carbon monoxide at a temperature of at least 1100° C., thereby reacting excess oxygen present in the furnace.
    Type: Application
    Filed: December 12, 2001
    Publication date: December 26, 2002
    Inventors: Kintu O. Early, Claude E. Lacy, Susan L. Schiefelbein, Sabyasachi Sen, Wanda J. Walczak, Joseph M. Whalen, Tiffany L. James, Hazel B. Matthews, Chukwuemeka B. Onuh