Patents by Inventor Heath Jensen

Heath Jensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230324435
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: April 12, 2023
    Publication date: October 12, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Uri Frodis, Heath A. Jensen
  • Publication number: 20230201968
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: April 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 9878401
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: January 30, 2018
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 9533376
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: January 3, 2017
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20150021299
    Abstract: Embodiments are directed to forming three-dimensional millimeter scale or micro-scale structures from single or multiple sheets or layers of material via electro discharge machining (EDM). In some embodiments, the electrodes are formed by single layer or multi-layer, single material or multi-material deposition processes. In some embodiments single electrodes form a plurality of parts or structures simultaneously. In some embodiments a sacrificial bridging material is used to hold parts together during and after EDM processing.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard
  • Publication number: 20140197145
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 8394463
    Abstract: Embodiments of the invention provide methods of crosslinking various compounds and materials made by these methods. Materials made by embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 12, 2013
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Marco Sillus, Barry Pham, Ly Phou, Gil Bruso, Christopher R. Enegren, Heath Jensen, Michael Paul Minor, Rajiv Shah
  • Patent number: 8066044
    Abstract: An apparatus for high speed labeling of produce including a turret which carries label depositor arms and continuously rotates so that its fully extended tangential speed matches the produce conveyor speed. The label depositor arms are reciprocated along a predetermined path by a mechanical linkage. A supply of pressurized air and vacuum are selectively delivered to the label depositor arms to pick-up a print-on-demand label and adhere it to the produce. One or more rotating turrets are included within a system for high speed labeling. The system monitors a common shaft which drives a conveyor that moves multiple lanes of produce under corresponding turrets. A conveyor offset signal in combination with a printer offset control, allows the system to independently synchronize the high-speed labeling operation at each lane.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 29, 2011
    Assignee: Hurst International, LLC
    Inventors: Aron Lichtenberg, John F. Shaw, Duy P. Le, Heath Jensen
  • Publication number: 20100096089
    Abstract: An apparatus for high speed labeling of produce including a turret which carries label depositor arms and continuously rotates so that its fully extended tangential speed matches the produce conveyor speed. The label depositor arms are reciprocated along a predetermined path by a mechanical linkage. A supply of pressurized air and vacuum are selectively delivered to the label depositor arms to pick-up a print-on-demand label and adhere it to the produce. One or more rotating turrets are included within a system for high speed labeling. The system monitors a common shaft which drives a conveyor that moves multiple lanes of produce under corresponding turrets. A conveyor offset signal in combination with a printer offset control, allows the system to independently synchronize the high-speed labeling operation at each lane.
    Type: Application
    Filed: April 16, 2009
    Publication date: April 22, 2010
    Inventors: Aron Lichtenberg, John F. Shaw, Duy P. Le, Heath Jensen