Patents by Inventor Heather D. Willauer

Heather D. Willauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890598
    Abstract: A supported heterogeneous catalyst material for catalyzing the reverse water-gas shift (RWGS) reaction for the selective formation of CO using an alkali metal-doped molybdenum carbide on a gamma alumina support (A-Mo2C/?-Al2O3, A=K, Na, Li). The A-Mo2C/?-Al2O3 catalyst is synthesized by co-impregnation of molybdemun and alkali metal precursors onto a ?-Al2O3 support. It is then carburized to form the A-Mo2C/?-Al2O3.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: February 6, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Porosoff, Heather D. Willauer
  • Patent number: 11421331
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 23, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, M. Kathleen Lewis, Heather D. Willauer, Frederick Williams
  • Publication number: 20220184587
    Abstract: A supported heterogeneous catalyst material for catalyzing the reverse water-gas shift (RWGS) reaction for the selective formation of CO using an alkali metal-doped molybdenum carbide on a gamma alumina support (A-Mo2C/?-Al2O3, A=K, Na, Li). The A-Mo2C/?-Al2O3 catalyst is synthesized by co-impregnation of molybdemun and alkali metal precursors onto a ?-Al2O3 support. It is then carburized to form the A-Mo2C/?-Al2O3.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Marc Porosoff, Heather D. Willauer
  • Patent number: 11266980
    Abstract: A method for CO2 hydrogenation via the reverse water-gas shift (RWGS) reaction using alkali metal-doped molybdenum carbide, supported on gamma alumina (A-Mo2C/?-Al2O3, A=K, Na, Li). The A-Mo2C/?-Al2O3 catalyst is synthesized by co-impregnation of molybdemun and alkali metal precursors onto a ?-Al2O3 support. It is then carburized to form the A-Mo2C/?-Al2O3. Also disclosed is the related catalyst material.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: March 8, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Porosoff, Heather D. Willauer
  • Publication number: 20210009409
    Abstract: Disclosed is a method of: providing a hydrogenated sp2 carbon allotrope, and releasing hydrogen gas from the carbon allotrope. The method may be used an apparatus having: a vessel for containing the hydrogenated sp2 carbon allotrope, a fuel cell capable of using hydrogen gas a fuel, and a tube for transporting hydrogen gas from the vessel to the fuel cell. The carbon allotrope may be made by: providing a mixture of an sp2 carbon allotrope and liquid ammonia, adding an alkali metal to the mixture, and sonicating the mixture to form a hydrogenated form of the carbon allotrope. The hydrogenated carbon can be at least 3.5 wt % hydrogen covalently bound to the carbon.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 14, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, James R. Morse, David A. Zugell, Bernard R. Matis, Heather D. Willauer, Nicolas T Gangemi, Brian Houston
  • Publication number: 20190329227
    Abstract: A method for CO2 hydrogenation via the reverse water-gas shift (RWGS) reaction using alkali metal-doped molybdenum carbide, supported on gamma alumina (A-Mo2C/?-Al2O3, A=K, Na, Li). The A-Mo2C/?-Al2O3 catalyst is synthesized by co-impregnation of molybdemun and alkali metal precursors onto a ?-Al2O3 support. It is then carburized to form the A-Mo2C/?-Al2O3. Also disclosed is the related catalyst material.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Inventors: Marc Porosoff, Heather D. Willauer
  • Patent number: 10450661
    Abstract: A method for using an electrochemical cell to continuously acidify alkaline water sources and recover carbon dioxide with simultaneous continuous hydrogen gas production. The electrochemical cell has a center compartment, an electrolyte-free anode compartment having a mesh anode in direct contact with an ion permeable membrane, an endblock in direct contact with the anode where the endblock provides a gas escape route behind the anode, an electrolyte-free cathode compartment having a mesh cathode in direct contact with an ion permeable membrane, and an endblock in direct contact with the cathode where the endblock provides a gas escape route behind the cathode. Current applied to the electrochemical cell for generating hydrogen gas also lowers the pH of the alkaline water to produce carbon dioxide with no additional current or power.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: October 22, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Heather D. Willauer, Dennis R. Hardy, Frederick Williams, M. Kathleen Lewis
  • Publication number: 20190085472
    Abstract: A method for the controlled removal of bicarbonate from alkaline water and its replacement with a strong base that is capable of chemically absorbing CO2 from the atmosphere as a carbonate and bicarbonate solution. This bicarbonate and carbonate solution is reprocessed in the central compartment of an electrolytic cation exchange module (E-CEM) to take advantage of the removal of CO2 from the air, and as an energetic byproduct of E-CEM dihydrogen production, and to regenerate the original strong base absorbent solution. Thus, this process is cyclical in nature, and no chemicals are needed except an initial source of alkaline water.
    Type: Application
    Filed: July 26, 2018
    Publication date: March 21, 2019
    Inventors: Heather D. Willauer, Dennis R. Hardy, Felice DiMascio, Frederick Williams
  • Publication number: 20180015444
    Abstract: A class of catalysts for CO2 hydrogenation via the reverse water-gas shift (RWGS) reaction to selectively produce CO for down-stream hydrocarbon synthesis. Alkali metal-doped molybdenum carbide, supported on gamma alumina (A-Mo2C/?-Al2O3, A=K, Na, Li), is synthesized by co-impregnation of molybdenum and alkali metal precursors onto a ?-Al2O3 support. The A-Mo/?-Al2O3 catalyst is then carburized to form the A-Mo2C/?-Al2O3. Also disclosed is the related method for CO2 hydrogenation via the RWGS reaction using the A-Mo2C/?-Al2O3 catalyst.
    Type: Application
    Filed: June 7, 2017
    Publication date: January 18, 2018
    Inventors: Marc Porosoff, Heather D. Willauer
  • Publication number: 20170268116
    Abstract: A method for using an electrochemical cell to continuously acidify alkaline water sources and recover carbon dioxide with simultaneous continuous hydrogen gas production. The electrochemical cell has a center compartment, an electrolyte-free anode compartment having a mesh anode in direct contact with an ion permeable membrane, an endblock in direct contact with the anode where the endblock provides a gas escape route behind the anode, an electrolyte-free cathode compartment having a mesh cathode in direct contact with an ion permeable membrane, and an endblock in direct contact with the cathode where the endblock provides a gas escape route behind the cathode. Current applied to the electrochemical cell for generating hydrogen gas also lowers the pH of the alkaline water to produce carbon dioxide with no additional current or power.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Felice DiMascio, Heather D. Willauer, Dennis R. Hardy, Frederick Williams, M. Kathleen Lewis
  • Patent number: 9719178
    Abstract: An electrochemical cell for the continuous acidification of alkaline water sources and recovery of carbon dioxide with simultaneous continuous hydrogen gas production having a center compartment, an electrolyte-free anode compartment having a mesh anode in direct contact with an ion permeable membrane, an endblock in direct contact with the anode where the endblock provides a gas escape route behind the anode, an electrolyte-free cathode compartment having a mesh cathode in direct contact with an ion permeable membrane, and an endblock in direct contact with the cathode where the endblock provides a gas escape route behind the cathode. Current applied to the electrochemical cell for generating hydrogen gas also lowers the pH of the alkaline water to produce carbon dioxide with no additional current or power. Also disclosed is the related method for continuously acidifying alkaline water sources and recovering carbon dioxide with continuous hydrogen gas production.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: August 1, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Heather D. Willauer, Dennis R. Hardy, Frederick Williams, M. Kathleen Lewis
  • Publication number: 20160215403
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, M. Kathleen Lewis, Heather D. Willauer, Frederick Williams
  • Patent number: 9303323
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 5, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R Hardy, M. Kathleen Lewis, Heather D. Willauer, Frederick Williams
  • Publication number: 20140238869
    Abstract: An electrochemical cell for the continuous acidification of alkaline water sources and recovery of carbon dioxide with simultaneous continuous hydrogen gas production having a center compartment, an electrolyte-free anode compartment having a mesh anode in direct contact with an ion permeable membrane, an endblock in direct contact with the anode where the endblock provides a gas escape route behind the anode, an electrolyte-free cathode compartment having a mesh cathode in direct contact with an ion permeable membrane, and an endblock in direct contact with the cathode where the endblock provides a gas escape route behind the cathode. Current applied to the electrochemical cell for generating hydrogen gas also lowers the pH of the alkaline water to produce carbon dioxide with no additional current or power. Also disclosed is the related method for continuously acidifying alkaline water sources and recovering carbon dioxide with continuous hydrogen gas production.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Inventors: Felice DiMascio, Heather D. Willauer, Dennis R. Hardy, Frederick Williams, M. Kathleen Lewis
  • Patent number: 8663365
    Abstract: A method for recovering carbon dioxide from acidified seawater using a membrane contactor and passing seawater with a pH less than or equal to 6 over the outside of a hollow fiber membrane tube while applying vacuum or a hydrogen sweep gas to the inside of the hollow fiber membrane tube, wherein up to 92% of the re-equilibrated [CO2]T is removed from the natural seawater.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 4, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Heather D. Willauer, John Barile, Felice DiMascio, Dennis R Hardy, Frederick Williams
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Publication number: 20130206605
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams
  • Publication number: 20130039837
    Abstract: A method for recovering carbon dioxide from acidified seawater using a membrane contactor and passing seawater with a pH less than or equal to 6 over the outside of a hollow fiber membrane tube while applying vacuum or a hydrogen sweep gas to the inside of the hollow fiber membrane tube, wherein up to 92% of the re-equilibrated [CO2]T is removed from the natural seawater.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Inventors: Heather D. Willauer, John Barile, Felice DiMascio, Dennis R. Hardy, Frederick Williams
  • Patent number: 8313557
    Abstract: The present invention is generally directed to a system for recovering CO2 from seawater or aqueous bicarbonate solutions using a gas permeable membrane with multiple layers. At elevated pressures, gaseous CO2 and bound CO2 in the ionic form of bicarbonate and carbonate diffuse from the seawater or bicarbonate solution through the multiple layers of the membrane. Also disclosed is the related method of recovering CO2 from seawater or aqueous bicarbonate solutions.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 20, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Heather D. Willauer, Dennis R Hardy, M. Kathleen Lewis, Ejiogu C. Ndubizu, Frederick Williams
  • Publication number: 20110281959
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: December 2, 2010
    Publication date: November 17, 2011
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Feice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams