Patents by Inventor Heather Diane Orser

Heather Diane Orser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12133982
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: November 5, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Patent number: 11315682
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: April 26, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20220008730
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Patent number: 11129989
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Publication number: 20200185093
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Application
    Filed: January 6, 2020
    Publication date: June 11, 2020
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Patent number: 10529450
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 7, 2020
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20190388692
    Abstract: Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Inventors: David A. Dinsmoor, Heather Diane Orser, Scott R. Stanslaski, Erik J. Peterson
  • Publication number: 20180350465
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 6, 2018
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Patent number: 10095837
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: October 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20160147964
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 26, 2016
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson