Patents by Inventor Heather Meylemans

Heather Meylemans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11130774
    Abstract: A series of 2,2?-dipyridyl ketone (DPK) containing metal complexes have been synthesized with metals including Mn, Fe, Co, Ni, Cu, Ru, Pd, and Pt. These complexes have one, two or three DPK ligands chelated to the metal center. In addition to the DPK ligands the complexes can comprise halogen ligands that can easily exchange with carbon dioxide to allow for reduction to small molecules such as methanol or oxalate. Initial electrochemical measurements show a reversible binding of carbon dioxide to the metal catalyst.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: September 28, 2021
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Heather A. Meylemans
  • Patent number: 10711215
    Abstract: A method to generate dioxolanes from renewable feedstocks, and more specifically, these oxygenated hydrocarbons can be used as gasoline-range fuels and diesel additives.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 14, 2020
    Assignee: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 10252966
    Abstract: A series of renewable bisphenols has been synthesized from creosol (2-methoxy-4-methylphenol) through stoichiometric condensation with short chain aldehydes. Creosol can be readily produced from lignin, potentially allowing for the large scale synthesis of bisphenol A replacements from abundant waste biomass. The renewable bisphenols were isolated in good yield and purity without resorting to solvent intense purification methods. Zinc acetate was shown to be selective catalyst for ortho-coupling of formaldehyde but was unreactive with more sterically demanding aldehydes. Dilute HCl and HBr solutions were shown to be effective catalysts for the selective coupling of aldehydes in the position meta to the phenol. Acid solutions could be recycled and used multiple times without decreases in activity or yield.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 9, 2019
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 10125311
    Abstract: A method for the fluorescence detection of metal ions and other environmental hazards utilizing ligand functionalized fluorescent nanoparticles. Synthesis of the non-toxic, air, and water stable nanoparticles has been optimized. The fluorescent nanoparticles of the present invention are made from varying ratios of metals including zinc, silver, copper, and indium and sulfur. By varying the ratios of these metals we are able to synthesize nanoparticles that emit over a large range of the visible spectrum. Charge transfer between a target molecule and the nanoparticle is readily identified by a fluorescence change allowing for a fast, simple, visual detection system without the need for expensive analytical instrumentation.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: November 13, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Heather A. Meylemans, Lee R. Cambrea, Madeline Kooima
  • Patent number: 10119953
    Abstract: The synthesis of AgInS2 based quantum dots and their use as fluorometric probes for the selective detection of nitroaromatic explosive chemicals, without the use of ligands specific to nitroaromatic explosive chemicals. These quantum dots allow the detection of nitroaromatic explosive molecules by eye. The present invention also represents a simple patterning method for quantum dots on substrates, including low cost filter paper. The ease of fabrication, use of less toxic materials, and the selectivity to nitroaromatic explosive chemicals results in a practical solution to the development of a portable fluorescent probe based on quantum dots for the detection of nitroaromatic explosive chemicals.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: November 6, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Alfred J. Baca, Heather A. Meylemans, Lee R. Cambrea, Lawrence Baldwin
  • Patent number: 10107787
    Abstract: A testing element, and methods of use therefor, for the detection of target analytes, for example metal ions and other environmental hazards, utilizing ligand functionalized fluorescent nanoparticles on a substrate. The non-toxic, air, and water stable fluorescent nanoparticles of the present invention are made from varying ratios of metals including zinc, silver, copper, and indium and sulfur. By varying the ratios of these metals nanoparticles can be synthesized that emit over a large range of the visible spectrum. Charge transfer between a target analyte and the nanoparticle is readily identified by a fluorescence change allowing for a fast, simple, visual detection system without the need for expensive analytical instrumentation. The test element can have more than one type of functionalized fluorescent nanoparticle which allows for the detection of multiple target analytes using a single test element.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: October 23, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Heather A. Meylemans, Alfred Baca, Lee R. Cambrea, Stephen Fallis
  • Patent number: 9994498
    Abstract: A fuel and method for conversion of sesquiterpenes to high density fuels. The sesquiterpenes can be either extracted from plants or specifically produced by bioengineered organisms from waste biomass. This approach allows for the synthesis of high performance renewable fuels.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: June 12, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 9938214
    Abstract: An efficient, low-temperature process to convert well-defined olefin oligomers, particularly butene oligomers to branched chain alcohols suitable for use as precursors to plasticizers commonly used in industry, and more specifically, the olefin feedstocks can be conveniently and renewably produced from short chain alcohols.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: April 10, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Roxanne L. Quintana
  • Patent number: 9802873
    Abstract: A highly efficient method for the conversion of a natural product into the high density fuel RJ-4 with concomitant evolution of isobutylene for conversion to fuels and polymers, more specifically, embodiments of the invention relate to efficient methods for the conversion of the renewable, linear terpene alcohol, linalool into a drop-in, high density fuel suitable for ramjet or missile propulsion.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: October 31, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G Harvey, Heather A Meylemans, Roxanne L Quintana
  • Patent number: 9773621
    Abstract: An apparatus and method for the uniform dispersion of nano scaled redox particles in a conductive fiber including, combining at least one nano sized redox capable material having metal oxides and/or metals, at least one conductive binder, and at least one solvent to form electrically conductive metal imbedded fiber(s) by fiber spinning and the conductive polymeric binder having a molecular weight greater than 20,000 Daltons, and coating a substrate with the electrically conductive fiber(s) to form an active layer substrate complex having a conductivity greater than 0.05 S/cm.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: September 26, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: William W. Lai, Alfred J. Baca, John D. Stenger-Smith, Heather Meylemans
  • Patent number: 9682897
    Abstract: A method for the efficient synthesis of useful deoxygenated terpenoids from an abundant renewable source, using catalytic conversion of oxygenated terpenoids. Oxygenated terpenoids such as 1,4-cineole and 1,8-cineole are, for example, major components of turpentine and essential oils. These oxygenated terpenoids can also be produced from sugars via a biosynthetic approach. Catalytic deoxygenation of these substrates can be used to efficiently generate commercially important chemicals and high density fuels for turbine or diesel propulsion.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: June 20, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 9670317
    Abstract: A material that can be used either as a standalone or coating additive that would both repel water and resist corrosion would greatly benefit the Navy. A method of making hydrophobic polymer, including combining a perylene derived monomer with a bisphenol derived monomer to produce a polymer mixture, and condensing said polymer mixture to produce a hydrophobic polymer.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: June 6, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: William W. Lai, Benjamin G. Harvey, Alfred J. Baca, Heather Meylemans
  • Patent number: 9666380
    Abstract: An apparatus and method for the uniform dispersion of nano scaled redox particles in a conductive fiber including, combining at least one nano sized redox capable material having metal oxides and/or metals, at least one conductive binder, and at least one solvent to form electrically conductive metal imbedded fiber(s) by fiber spinning and the conductive polymeric binder having a molecular weight greater than 20,000 Daltons, and coating a substrate with the electrically conductive fiber(s) to form an active layer/substrate complex having a conductivity greater than 0.05 S/cm.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 30, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: William W. Lai, Alfred J. Baca, John D. Stenger-Smith, Heather Meylemans
  • Patent number: 9617488
    Abstract: A process for making high density fuels, pure terpene dimers, and byproducts from mixed terpene feedstocks and the resulting high density fuel products. The fuels produced by the process includes, dimerizing at least one terpene feedstock by mixing at least one terpene with at least one heterogeneous acidic catalyst and at least one solvent used to control the reaction temperature for a desired time and temperature to produce a crude terpene dimer (C20H32 mixture) in about 65% to about 95% chemical yield, hydrogenating the crude terpene dimer (C20H32 mixture) with at least one hydrogenation catalyst under a hydrogen atmosphere and removing the hydrogenating catalyst(s) to produce about 65% by weight to about 95% by weight of hydrogenated terpene dimer mixture, and utilizing a separation method against the hydrogenated terpene dimer mixture to produce byproducts, where the process generates a hydrocarbon mixture with a viscosity of between about 20 and 50 cSt at 40° C.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: April 11, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G Harvey, Heather A Meylemans, Roxanne L Quintana
  • Patent number: 9517987
    Abstract: A method for the selective synthesis of bisphenols, thermosetting resins, and thermoplastics from salicylic acid, the major component of wintergreen oil, and a viable target for engineered biosynthesis. Condensation of salicylic acid, structural analogs of salicylic acid, and derivatives of salicylic acid with short chain aldehydes or ketones and subsequent decarboxylation has the potential to produce bisphenols that are direct replacements for conventional resins, while the steric and electronic effects of salicylic acid improve the efficiency and selectivity of the conversion process. The utilization of renewable polyphenols as precursors to epoxies, poly carbonates, and high temperature thermosets including cyanate esters, provides an opportunity to develop full-performance resins while reducing the use of petroleum based feedstocks. This approach will then diminish the overall environmental impact of resin production while allowing for a sustainable source of phenols.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: December 13, 2016
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Michael E. Wright, Andrew Chafin
  • Patent number: 9327279
    Abstract: A highly efficient method for the conversion of a natural product into the high density fuel RJ-4 with concomitant evolution of isobutylene for conversion to fuels and polymers, more specifically, embodiments of the invention relate to efficient methods for the conversion of the renewable, linear terpene alcohol, linalool into a drop-in, high density fuel suitable for ramjet or missile propulsion.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 3, 2016
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Roxanne L. Quintana
  • Patent number: 9315623
    Abstract: A soluble n-type copolymer that is useful in electronic and photonic devices. Embodiments of the invention include an n-type copolymer having a soluble n-type perylene copolymer having base formula A, where R is a backbone segment, where R1 and R2 are independently selected from the group consisting of alkyl, fluorinated alkyl, functionalized alkyl, aryl, fluorinated aryl, and functionalized aryl, and where n ranges from about 2 to 50,000.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 19, 2016
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: William C. Lai, Alfred Baca, Benjamin Harvey, M. Joseph Roberts, Heather Meylemans
  • Patent number: 9187591
    Abstract: A method to generate renewable high performance composites and thermoplastics. These materials can be generated from a renewable phenol (syringaldehyde) that can be derived from lignocellulosic biomass. The use of syringaldehyde as a precursor to composites has the potential to reduce the cost and environmental impact of structural materials, while meeting or exceeding the performance of current petroleum derived resins.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: November 17, 2015
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G Harvey, Matthew C Davis, Heather A. Meylemans, William Lai
  • Publication number: 20150315097
    Abstract: A fuel and method for conversion of sesquiterpenes to high density fuels. The sesquiterpenes can be either extracted from plants or specifically produced by bioengineered organisms from waste biomass. This approach allows for the synthesis of high performance renewable fuels.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 5, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 9127115
    Abstract: A method to generate renewable high performance composites and thermoplastics. These materials can be generated from a renewable phenol (syringaldehyde) that can be derived from lignocellulosic biomass. The use of syringaldehyde as a precursor to composites has the potential to reduce the cost and environmental impact of structural materials, while meeting or exceeding the performance of current petroleum derived resins.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: September 8, 2015
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G Harvey, Matthew C Davis, Heather A. Meylemans, William Lai