Patents by Inventor Heather Ordonez

Heather Ordonez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148843
    Abstract: There is provided a peptide which is capable of binding to an MHC molecule in vitro and being presented to a T cell without antigen processing (i.e. an apitope) which peptide comprises all or a portion of the following proteolipid protein (PLP) peptides: PLP 36-61: HE ALTGTEKLIET YF SKN YQD YEYLI (SEQ ID NO. 1) PLP 179-206: TWTTCQSIAFPSKTSASIGSLCA-DARMY (SEQ ID NO. 2) PLP 207-234: GVLPWNAFPGKVCGSNLLSICKTAEFQM (SEQ ID NO. 3). There is also provided the use of such a peptide in a pharmaceutical composition and a method to treat and/or prevent a disease using such a peptide.
    Type: Application
    Filed: August 11, 2023
    Publication date: May 9, 2024
    Inventors: David Wraith, Heather Streeter, Laurence Ordonez
  • Publication number: 20210295947
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Application
    Filed: November 13, 2020
    Publication date: September 23, 2021
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 10854315
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 1, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Publication number: 20160232291
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 11, 2016
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton