Patents by Inventor Hee Dong Jang

Hee Dong Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11362326
    Abstract: An embodiment of the present invention provides a method for preparing a silicon-carbon-graphene composite, comprising the steps of: (step 1) adding a carbon precursor solution to silicon and performing wet grinding so as to prepare a suspension: (step 2) forming a silicon-carbon composite by spray drying the suspension; and (step 3) spray drying and heat treating a solution comprising the silicon-carbon composite and graphene oxide.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 14, 2022
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee-Dong Jang, Han-Kwon Chang, Dae-Sup Kil, Ji-Hyuk Choi, Sun-Kyung Kim
  • Publication number: 20210242450
    Abstract: The present disclosure provides a method for manufacturing a silicon-carbon-graphene composite comprising, preparing a suspension in which silicon, carbon source and graphene oxide are dispersed, subjecting the suspension to an aerosol process to form a silicon-carbon source-graphene oxide composite and heat-treating the silicon-carbon source-graphene oxide composite to form a silicon-carbon-graphene composite, and prevents direct contact of the electrolyte, so it can exhibit excellent cycling performance and stability.
    Type: Application
    Filed: September 28, 2020
    Publication date: August 5, 2021
    Applicant: Korea Institute Of Geoscience And Mineral Resources
    Inventors: Hee Dong JANG, Han Kwon CHANG, Sun Kyung KIM
  • Patent number: 10822237
    Abstract: A method for preparing graphene balls, the method including, a) preparing a dispersion which includes, a graphene oxide, a reducing agent ranging from a monosaccharide to a polysaccharide, ammonia water and a dispersion medium; and b) spraying and drying the dispersion. According to the preparation method of the present disclosure, it is possible to prepare uniformly sized and spherical graphene balls. Such graphene can be applied to various fields due to excellent physical and chemical characteristics.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 3, 2020
    Assignee: Korea Institute Of Geoscience And Mineral Resources
    Inventors: Hee-Dong Jang, Han-Kwon Chang, Ji-Hyuk Choi
  • Publication number: 20190355985
    Abstract: An embodiment of the present invention provides a method for preparing a silicon-carbon-graphene composite, comprising the steps of: (step 1) adding a carbon precursor solution to silicon and performing wet grinding so as to prepare a suspension: (step 2) forming a silicon-carbon composite by spray drying the suspension; and (step 3) spray drying and heat treating a solution comprising the silicon-carbon composite and graphene oxide.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 21, 2019
    Applicant: Korea Institute of Geoscience And Mineral Resources
    Inventors: Hee-Dong JANG, Han-Kwon CHANG, Dae-Sup Kil, Ji-Hyuk Choi, Sun-Kyung Kim
  • Publication number: 20190157654
    Abstract: In one aspect of the present invention, a method of for synthesizing compression- and aggregation-resistant particles includes forming a graphene dispersion solution with micron-sized graphene-based material sheets, nebulizing the graphene dispersion solution to form aerosol droplets, passing the aerosol droplets through a horizontal tube furnace pre-heated at a predetermined temperature by a carrier gas, and drying the aerosol droplets to concentrate and compress the micron-sized graphene-based material sheets into crumpled particles of sub-micron scale.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 23, 2019
    Inventors: Jiaxing Huang, Hee Dong Jang, Jiayan Luo
  • Publication number: 20190157666
    Abstract: Capsules comprising crumpled graphene sheets that form a crumpled graphene shell encapsulating an internal cargo comprising nanostructures of a second component are provided. Also provided are anode materials for lithium ion batteries comprising the capsules, wherein the nanostructures are composed of an electrochemically active material, such as silicon.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 23, 2019
    Inventors: Jiaxing Huang, Hee Dong Jang, Jiayan Luo
  • Publication number: 20190112194
    Abstract: A method for preparing graphene balls, the method including, a) preparing a dispersion which includes, a graphene oxide, a reducing agent ranging from a monosaccharide to a polysaccharide, ammonia water and a dispersion medium; and b) spraying and drying the dispersion. According to the preparation method of the present disclosure, it is possible to prepare uniformly sized and spherical graphene balls. Such graphene can be applied to various fields due to excellent physical and chemical characteristics.
    Type: Application
    Filed: March 14, 2017
    Publication date: April 18, 2019
    Applicant: Korea Institute Of Geoscience And Mineral Resources
    Inventors: Hee-Dong JANG, Han-Kwon CHANG, Ji-Hyuk CHOI
  • Patent number: 10135059
    Abstract: In one aspect of the present invention, a method of for synthesizing compression- and aggregation-resistant particles includes forming a graphene dispersion solution with micron-sized graphene-based material sheets, nebulizing the graphene dispersion solution to form aerosol droplets, passing the aerosol droplets through a horizontal tube furnace pre-heated at a predetermined temperature by a carrier gas, and drying the aerosol droplets to concentrate and compress the micron-sized graphene-based material sheets into crumpled particles of sub-micron scale.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 20, 2018
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Jiaxing Huang, Hee Dong Jang, Jiayan Luo
  • Patent number: 10135063
    Abstract: Capsules comprising crumpled graphene sheets that form a crumpled graphene shell encapsulating an internal cargo comprising nanostructures of a second component are provided. Also provided are anode materials for lithium ion batteries comprising the capsules, wherein the nanostructures are composed of an electrochemically active material, such as silicon.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 20, 2018
    Assignees: NORTHWESTERN UNIVERSITY, KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Jiaxing Huang, Hee Dong Jang, Jiayan Luo
  • Patent number: 9296617
    Abstract: Disclosed is a method for selectively separating and recovering silicon from waste silicon sludge generated during a semiconductor manufacturing process. With the method for separating and recovering silicon from the silicon sludge, oil components, iron, silicon carbide that are included in the silicon sludge may be removed and silicon may be selectively separated and recovered. In addition, silicon may be efficiently recovered without injection of an additive for precipitating a specific component or without a separate device such as a magnetic separator, or the like, for removing iron.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: March 29, 2016
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee Dong Jang, Han Kwon Chang, Dae Sup Kil
  • Patent number: 9272917
    Abstract: Disclosed is a method of preparing mesoporous silica particles. The method includes (a) preparing an aqueous silicic acid, (b) spraying the aqueous silicic acid in a droplet state by activating the aqueous silicic acid, and (c) pyrolyzing the sprayed droplet through a reactor, which is previously heated, by allowing the sprayed droplet to pass through the reactor together with a carrier gas. The aqueous silicic acid includes 0.4 M to 0.8 M of silicic acid.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 1, 2016
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Han Kwon Chang, Hee Dong Jang
  • Patent number: 9102555
    Abstract: The present invention provides a method for removing phosphorus and nitrogen contained in sewage or wastewater using iron ore wastewater. According to the method of the present invention, in which the phosphorus and nitrogen contained in sewage or wastewater are crystallized in the form of struvite using iron ore wastewater containing a large amount of Mg2+ produced in a process of upgrading low-grade iron ore and removed, it is possible to reduce the cost of Mg2+ and the cost of iron ore wastewater treatment, thereby earning economic profits. Moreover, it is possible to prevent water pollution by the removal of the phosphorus and nitrogen contained in sewage or wastewater. Furthermore, it is possible to use struvite crystals obtained as a by-product as a time-release compound fertilizer so as to reduce the amount of fertilizer used and the number of fertilizations, thereby reducing soil contamination.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 11, 2015
    Assignee: Korea Institute of Geosciences and Mineral Resources
    Inventors: Yong Jae Suh, Myung Eun Ju, Dae Sup Kil, Hee Dong Jang
  • Patent number: 8986906
    Abstract: The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee Dong Jang, Han Kwon Chang, Kuk Cho
  • Patent number: 8967492
    Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
  • Patent number: 8940179
    Abstract: The present invention relates to a method for preparing magnetite nanoparticles from low-grade iron ore using solvent extraction and magnetite nanoparticles prepared by the same. According to the method for magnetite nanoparticles from low-grade iron ore of the present invention, it is possible to prepare high-purity magnetite nanoparticles having a purity of 99% or higher by solvent extraction using low-grade iron ore as a starting material, and thus it is possible to reduce the processing cost and the amount of energy used, thus supplying a high-efficiency magnetite nanoparticle adsorbent, which can be industrially applied to wastewater treatment or desalination plant, in large quantities at low cost. In particular, it is possible to effectively treat livestock wastewater, heavy metal wastewater, oil discharged into rivers, etc. at low cost, thus significantly contributing to the prevention of environmental pollution.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: January 27, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Yong Jae Suh, Dae Sup Kil, Hee Dong Jang
  • Publication number: 20140339078
    Abstract: Provided is a glucose sensor. The glucose sensor according to the present invention includes noble metal-graphene composites, and has high sensitivity and significantly excellent current flow as compared to titanium dioxide-graphene composites. In addition, the noble metal-graphene composite manufactured by aerosol spray pyrolysis serves as an improved glucose sensor having desirable sensitivity, stability, reproducibility, and selectivity.
    Type: Application
    Filed: September 17, 2013
    Publication date: November 20, 2014
    Applicant: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Hee Dong JANG, Han Kwon CHANG, Sun Kyung KIM, Ki Min ROH
  • Patent number: 8883254
    Abstract: Disclosed is a method of synthesizing hollow silica having the size of micrometers from sodium silicate. The method includes fabricating a polystyrene organic template from polystyrene latex, (B) cleaning the polystyrene organic template, (C) exchanging media by using a water-base medium, introducing the cleaned polystyrene organic template and sodium silicate, and preparing a silica-coated organic template by performing an acidic hydrolysis reaction, and (D) cleaning the silica-coated organic template included in the water-base medium by using water. The size of the organic template is adjusted by controlling an amount of introduced AIBN included when the organic template is fabricated. The cleaning of the organic template is preferably performed by using water (H2O). The method further includes (B) removing the organic template by using THF and (F) cleaning the hollow silica having no organic template.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: November 11, 2014
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Jiwoong Kim, Hee Dong Jang, Han Kwon Chang
  • Publication number: 20140141163
    Abstract: Disclosed is a method of synthesizing hollow silica having the size of micrometers from sodium silicate. The method includes fabricating a polystyrene organic template from polystyrene latex, (B) cleaning the polystyrene organic template, (C) exchanging media by using a water-base medium, introducing the cleaned polystyrene organic template and sodium silicate, and preparing a silica-coated organic template by performing an acidic hydrolysis reaction, and (D) cleaning the silica-coated organic template included in the water-base medium by using water. The size of the organic template is adjusted by controlling an amount of introduced AIBN included when the organic template is fabricated. The cleaning of the organic template is preferably performed by using water (H2O). The method further includes (B) removing the organic template by using THF and (F) cleaning the hollow silica having no organic template.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Applicant: Korea Institute of Geoscience and Mineral Resources
    Inventors: Jiwoong Kim, Hee Dong Jang, Han Kwon Chang
  • Publication number: 20140017154
    Abstract: Disclosed is a method of preparing mesoporous silica particles. The method includes (a) preparing an aqueous silicic acid, (b) spraying the aqueous silicic acid in a droplet state by activating the aqueous silicic acid, and (c) pyrolyzing the sprayed droplet through a reactor, which is previously heated, by allowing the sprayed droplet to pass through the reactor together with a carrier gas. The aqueous silicic acid includes 0.4 M to 0.8 M of silicic acid.
    Type: Application
    Filed: November 14, 2012
    Publication date: January 16, 2014
    Applicant: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Han Kwon Chang, Hee Dong Jang
  • Publication number: 20130344392
    Abstract: Capsules comprising crumpled graphene sheets that form a crumpled graphene shell encapsulating an internal cargo comprising nanostructures of a second component are provided. Also provided are anode materials for lithium ion batteries comprising the capsules, wherein the nanostructures are composed of an electrochemically active material, such as silicon.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 26, 2013
    Applicant: Northwestern University
    Inventors: Jiaxing Huang, Hee Dong Jang, Jiayan Luo