Patents by Inventor Hee Du Lee

Hee Du Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10654768
    Abstract: The present disclosure provides a process for effectively separating and removing by-products (light gas, C5-C6 hydrocarbon oil fraction, polyethylbenzene) contained in a substantial amount in addition to ethylbenzene as a target compound in an alkylation reaction product of a fluidized catalytic cracking off-gas to prepare ethylbenzene having high purity, and process economical efficiency may be secured by utilizing the polyethylbenzene as an absorbent or gasoline fraction, without requiring a transalkylation reaction for further producing ethylbenzene from polyethylbenzene.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: May 19, 2020
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Dae Sung Song, Hee Du Lee, Sang Il Lee, Kyung Jong Oh, Ji Hoon Lee, Yeon Ho Kim
  • Publication number: 20180362417
    Abstract: The present disclosure provides a process for effectively separating and removing by-products (light gas, C5-C6 hydrocarbon oil fraction, polyethylbenzene) contained in a substantial amount in addition to ethylbenzene as a target compound in an alkylation reaction product of a fluidized catalytic cracking off-gas to prepare ethylbenzene having high purity, and process economical efficiency may be secured by utilizing the polyethylbenzene as an absorbent or gasoline fraction, without requiring a transalkylation reaction for further producing ethylbenzene from polyethylbenzene.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 20, 2018
    Inventors: Dae Sung Song, Hee Du Lee, Sang Il Lee, Kyung Jong Oh, Ji Hoon Lee, Yeon Ho Kim
  • Patent number: 9062262
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: June 23, 2015
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim
  • Publication number: 20100137664
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Application
    Filed: July 18, 2008
    Publication date: June 3, 2010
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim