Patents by Inventor Hee-Goon Noh

Hee-Goon Noh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10655196
    Abstract: Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn?28 and 33.5C?Mn?23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr?57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at ?196° C. is 41 J or more, and a method of manufacturing the steel. According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 19, 2020
    Assignee: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Young-Hwan Park, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, In-Gyu Park, Hong-Ju Lee
  • Patent number: 9650703
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 16, 2017
    Assignee: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hong-Ju Lee, In-Shik Suh, In-Gyu Park
  • Patent number: 9394579
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 19, 2016
    Assignee: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20150020928
    Abstract: Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn?28 and 33.5C?Mn?23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr?57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at ?196° C. is 41 J or more, and a method of manufacturing the steel. According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 22, 2015
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Young-Hwan Park, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, In-Gyu Park, Hong-Ju Lee
  • Publication number: 20140373588
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 25, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hong-Ju Lee, In-Shik Suh, In-Gyu Park
  • Publication number: 20140356220
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 4, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, Hak-Cheol Lee, In-Gyu Park, Hong-Ju Lee
  • Publication number: 20130174941
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Application
    Filed: November 21, 2011
    Publication date: July 11, 2013
    Applicant: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20120288396
    Abstract: Provided is an austenite steel having excellent ductility including 8 wt % to 15 wt % of manganese (Mn), 3 wt % or less (excluding 0 wt %) of copper (Cu), a content of carbon (C) satisfying relationships of 33.5C+Mn?25 and 33.5C?Mn?23, and iron (Fe) as well as unavoidable impurities as a remainder. According to an aspect, austenite is stabilized and generation of carbides in a network form at austenite grain boundaries is inhibited by adding copper (Cu) favorable to inhibition of carbide formation with respect to manganese and appropriately controlling contents of carbon and manganese, and thus, high economic efficiency may also be achieved while ductility and wear resistance are improved.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hyun-Kwan Cho, Hee-Goon Noh