Patents by Inventor Hee-joon JUNG

Hee-joon JUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9166074
    Abstract: A method of fabricating single-crystalline metal silicide nanowires for anti-reflective electrodes for photovoltaics is provided that includes exposing a surface of a metal foil to oxygen or hydrogen at an elevated temperature, and growing metal silicide nanowires on the metal foil surface by flowing a silane gas mixture over the metal foil surface at the elevated temperature, where spontaneous growth of the metal silicide nanowires occur on the metal foil surface, where the metal silicide nanowires are post treated for use as an electrode in a photovoltaic cell or used directly as the electrode in the photovoltaic cell.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 20, 2015
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., LTD.
    Inventors: Neil Dasgupta, Hee Joon Jung, Andrei Iancu, Rainer J. Fasching, Friedrich B. Prinz, Hitoshi Iwadate, Shicheng Xu
  • Patent number: 8883266
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 11, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140093654
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 3, 2014
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C. Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Patent number: 8599490
    Abstract: A variable-focus liquid lens is provided. The liquid lens includes a membrane and a fluid. The membrane is made of a transparent elastomer, and the fluid fills a predetermined space to contact at least a lens surface of the membrane. The membrane and the fluid are respectively made of materials repulsive to each other, for example, hydrophilic and hydrophobic materials or oleophilic and oleophobic materials. Accordingly, a repulsive force between the fluid and the membrane can prevent the absorption or leaking of the fluid into/through the membrane.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 3, 2013
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jeong-yub Lee, Cheol-min Park, Seung-tae Choi, Seung-wan Lee, Jong-oh Kwon, Hee-joon Jung
  • Patent number: 8551868
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 8, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior Universit, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20110269298
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Application
    Filed: March 24, 2011
    Publication date: November 3, 2011
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20110051254
    Abstract: A variable-focus liquid lens is provided. The liquid lens includes a membrane and a fluid. The membrane is made of a transparent elastomer, and the fluid fills a predetermined space to contact at least a lens surface of the membrane. The membrane and the fluid are respectively made of materials repulsive to each other, for example, hydrophilic and hydrophobic materials or oleophilic and oleophobic materials. Accordingly, a repulsive force between the fluid and the membrane can prevent the absorption or leaking of the fluid into/through the membrane.
    Type: Application
    Filed: May 21, 2010
    Publication date: March 3, 2011
    Applicants: SAMSUNG ELECTRONICS CO., LTD., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jeong-yub LEE, Cheol-min PARK, Seung-tae CHOI, Seung-wan LEE, Jong-oh KWON, Hee-joon JUNG