Patents by Inventor Hee Kong Phoon

Hee Kong Phoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240312909
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Application
    Filed: May 21, 2024
    Publication date: September 19, 2024
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Patent number: 12009298
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: June 11, 2024
    Assignee: Intel Corporation
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Publication number: 20230378061
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 23, 2023
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Patent number: 11670589
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Publication number: 20210111116
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Patent number: 10886218
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Patent number: 10686446
    Abstract: A programmable integrated circuit with lookup table circuitry is provided. The lookup table (LUT) circuitry may be formed using multiplexers. A multiplexer in the lookup table circuitry may be implemented using only tristate inverting circuits. Each tristate inverting circuit may include a first set of n-channel and p-channel transistors that receive a static control bit from a memory element and a second set of n-channel and p-channel transistors that receive true and complementary versions of a user signal. The first and second sets of transistors may be coupled in series between a positive power supply terminal and a ground power supply terminal. A LUT multiplexer implemented in this way need not include separate transmission gates at the output of each tristate inverting circuit and may exhibit minimal subthreshold leakage.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 16, 2020
    Assignee: Altera Corporation
    Inventors: Bee Yee Ng, Hee Kong Phoon, Teik Hong Ooi, Guan Hoe Oh
  • Publication number: 20190326210
    Abstract: The presently disclosed programmable fabric die includes a direct fabric die-to-fabric die interconnect interface column disposed in a sector of programmable logic fabric. Each row of the interconnect interface column includes at least one interconnect interface that is electrically coupled to a microbump. The microbump is configured to be electrically coupled to another microbump of another interconnect interface of another fabric die through an interposer. The fabric die may include multiple interconnect interface columns that each extend deep into the sector, enabling low latency connections between the fabric dies and reducing routing congestion. In some embodiments, the fabric die may include interconnect interfaces that are instead distributed throughout logic blocks of the sector.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Chee Hak Teh, Chee Seng Leong, Lai Guan Tang, Han Wooi Lim, Hee Kong Phoon
  • Publication number: 20170294914
    Abstract: A programmable integrated circuit with lookup table circuitry is provided. The lookup table (LUT) circuitry may be formed using multiplexers. A multiplexer in the lookup table circuitry may be implemented using only tristate inverting circuits. Each tristate inverting circuit may include a first set of n-channel and p-channel transistors that receive a static control bit from a memory element and a second set of n-channel and p-channel transistors that receive true and complementary versions of a user signal. The first and second sets of transistors may be coupled in series between a positive power supply terminal and a ground power supply terminal. A LUT multiplexer implemented in this way need not include separate transmission gates at the output of each tristate inverting circuit and may exhibit minimal subthreshold leakage.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Bee Yee Ng, Hee Kong Phoon, Teik Hong Ooi, Guan Hoe Oh
  • Publication number: 20170201256
    Abstract: A programmable integrated circuit with lookup table circuitry is provided. The lookup table (LUT) circuitry may be formed using multiplexers. A multiplexer in the lookup table circuitry may be implemented using only tristate inverting circuits. Each tristate inverting circuit may include a first set of n-channel and p-channel transistors that receive a static control bit from a memory element and a second set of n-channel and p-channel transistors that receive true and complementary versions of a user signal. The first and second sets of transistors may be coupled in series between a positive power supply terminal and a ground power supply terminal. A LUT multiplexer implemented in this way need not include separate transmission gates at the output of each tristate inverting circuit and may exhibit minimal subthreshold leakage.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Bee Yee Ng, Hee Kong Phoon, Teik Hong Ooi, Guan Hoe Oh
  • Patent number: 9705504
    Abstract: A programmable integrated circuit with lookup table circuitry is provided. The lookup table (LUT) circuitry may be formed using multiplexers. A multiplexer in the lookup table circuitry may be implemented using only tristate inverting circuits. Each tristate inverting circuit may include a first set of n-channel and p-channel transistors that receive a static control bit from a memory element and a second set of n-channel and p-channel transistors that receive true and complementary versions of a user signal. The first and second sets of transistors may be coupled in series between a positive power supply terminal and a ground power supply terminal. A LUT multiplexer implemented in this way need not include separate transmission gates at the output of each tristate inverting circuit and may exhibit minimal subthreshold leakage.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: July 11, 2017
    Assignee: Altera Corporation
    Inventors: Bee Yee Ng, Hee Kong Phoon, Teik Hong Ooi, Guan Hoe Oh
  • Patent number: 9047934
    Abstract: An integrated circuit includes a delay circuit, a buffer circuit, and a storage circuit. The delay circuit delays a first timing signal to generate a second timing signal. The buffer circuit generates a third timing signal for transmission to an external device. The third timing signal is generated based on the first timing signal. The external device provides data to the integrated circuit based on the third timing signal. The storage circuit captures the data transmitted from the external device in response to the second timing signal.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: June 2, 2015
    Assignee: Altera Corporation
    Inventors: Bee Yee Ng, Hee Kong Phoon, Beng Lee Ooi
  • Patent number: 8863061
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 14, 2014
    Assignee: Altera Corporation
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Publication number: 20130314122
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Altera Corporation
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Patent number: 8504963
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Altera Corporation
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Publication number: 20130002295
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: ALTERA CORPORATION
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Patent number: 8291355
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: October 16, 2012
    Assignee: Altera Corporation
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Publication number: 20110084727
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 14, 2011
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Patent number: 7870513
    Abstract: Providing ASIC equivalents of FPGAs is facilitated and made more efficient and economical by using an ASIC architecture including a plurality of so-called hybrid logic elements (“HLEs”), each of which can provide a portion of the full functionality of an FPGA logic element (“LE”). The functionality of each FPGA LE implementing a user's logic design can be mapped to one or more HLEs without re-synthesis of the user's logic. Only as many HLEs as are necessary are used to perform the functions of each LE. The one-for-one equivalence between each LE and either (1) one HLE or (2) a group of HLEs facilitates mapping (without re-synthesis) in either direction between FPGA and ASIC designs.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 11, 2011
    Assignee: Altera Corporation
    Inventors: Kar Keng Chua, Sammy Cheung, Hee Kong Phoon, Kim Pin Tan, Wei Lian Goay
  • Patent number: 7733121
    Abstract: Methods and apparatus for programmably powering down a structured application-specific integrated circuit are provided. At least one of the programmable layers of the structured ASIC that frequently provides some programmability as between or among a small number of alternative functions is used to provide this programmability.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: June 8, 2010
    Assignee: Altera Corporation
    Inventors: Hee Kong Phoon, Kar Keng Chua