Patents by Inventor Hegeon Kwun

Hegeon Kwun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6624628
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of ferromagnetic pipes or tubes. A magnetostrictive sensor generates shear waves and/or torsional waves in ferromagnetic pipes or tubes, which waves travel therethrough in a direction parallel to the longitudinal axis of the pipe. A circumferential magnetization is generated in the ferromagnetic pipe or tube by a DC or low frequency voltage establishing a current along the longitudinal axis and past the magnetostrictive sensor. Reflected shear or torsional waves may represent defects in the pipe or tube.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: September 23, 2003
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Sang-Young Kim, Alfred E. Crouch
  • Publication number: 20020105324
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of pipes or tubes. A magnetostrictive sensor generates guided waves in a pipe or tube, which waves travel therethrough in a direction parallel to the longitudinal axis of the pipe or tube. This is achieved by using a magnetized ferromagnetic strip being pressed circumferentially against the pipe or tube. The guided waves are generated in the strip and coupled to the pipe or tube and propagate along the length of said pipe or tube. For detection, the guided waves in said pipe or tube are coupled to the thin ferromagnetic strip and are detected by receiving MsS coils. Reflected guided waves may represent defects in the pipe or tube.
    Type: Application
    Filed: March 22, 2001
    Publication date: August 8, 2002
    Inventors: Hegeon Kwun, Sang-Young Kim, James F. Crane
  • Patent number: 6429650
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of pipes or tubes. A magnetostrictive sensor generates guided waves in a pipe or tube, which waves travel therethrough in a direction parallel to the longitudinal axis of the pipe or tube. This is achieved by using a magnetized ferromagnetic strip being pressed circumferentially against the pipe or tube. The guided waves are generated in the strip and coupled to the pipe or tube and propagate along the length of said pipe or tube. For detection, the guided waves in said pipe or tube are coupled to the thin ferromagnetic strip and are detected by receiving MsS coils. Reflected guided waves may represent defects in the pipe or tube.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: August 6, 2002
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Sang-Young Kim, James F. Crane
  • Patent number: 6424150
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of railroad rails. The system includes magnetostrictive sensors specifically designed for application in conjunction with railroad rails and trains that generate guided waves in the railroad rails which travel therethrough in a direction parallel to the surface of the railroad rail. Similarly structured sensors are positioned to detect the guided waves (both incident and reflected) and generate signals representative of the characteristics of the guided waves detected that are reflected from anomalies in the structure such as transverse defects. The sensor structure is longitudinal in nature and generates a guided wave having a wavefront parallel to the longitudinal axis of the sensor, and which propagates in a direction perpendicular to the longitudinal axis of the sensor. The generated guided waves propagate in the rail within the path of the propagating wave.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: July 23, 2002
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Glenn M. Light
  • Patent number: 6404189
    Abstract: A method and system for implementing magnetostrictive sensor techniques for the nondestructive evaluation of pipeline structures. The system consists of a magnetostrictive sensor instrument unit, a data storage unit, and a plurality of magnetostrictive sensor probes are positioned on an in-line inspection vehicle. The instrumentation unit includes electronics for transmitting excitation pulses to a transmitting magnetostrictive sensor probe as well as electronics for amplifying and conditioning the signals detected by a receiving magnetostrictive sensor probe. The magnetostrictive sensor probes include both plate magnetostrictive sensors and permanent magnets which provide a DC bias magnetic field necessary for magnetostrictive sensor operation. The transmitting and receiving probes are attached to the in-line inspection vehicle by way of mechanical arms on opposing sides of the vehicle.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 11, 2002
    Assignee: Southeast Research Institute
    Inventors: Hegeon Kwun, Sang Young Kim
  • Patent number: 6396262
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive short term inspection or long term monitoring of a structure. A plurality of magnetostrictive sensors are arranged in parallel on the structure and includes (a) a thin ferromagnetic strip that has residual magnetization, (b) that is coupled to the structure with a couplant, and (c) a coil located adjacent the thin ferromagnetic strip. By a transmitting coil, guided waves are generated in a transmitting strip and coupled to the structure and propagate along the length of the structure. For detection, the reflected guided waves in the structure are coupled to a receiving strip and are detected by a receiving magnetostrictive coil. Reflected guided waves may represent defects in the structure.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: May 28, 2002
    Assignee: Southwest Research Institute
    Inventors: Glenn M. Light, Hegeon Kwun, Sang-Young Kim, Robert L. Spinks, Jr.
  • Patent number: 6373245
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of plate type structures such as walls, vessels, enclosures, and the like. The system includes magnetostrictive sensors specifically designed for application in conjunction with plate type structures or pipes that generate guided waves in the plates or pipes which travel therethrough in a direction parallel to the surface of the plate or pipe. Similarly structured sensors are positioned to detect the guided waves (both incident and reflected) and generate signals representative of the characteristics of the guided waves detected that are reflected from anomalies in the structure such as corrosion pits and cracks. The sensor structure is longitudinal in nature and generates a guided wave having a wavefront parallel to the longitudinal axis of the sensor, and which propagates in a direction perpendicular to the longitudinal axis of the sensor.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: April 16, 2002
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Sang Young Kim
  • Patent number: 6295677
    Abstract: An improved method for defect detectability for the inspection of liquid filled pipes using magnetostrictive sensors. The improved method comprises first recognizing the liquid-induced changes in the dispersion properties of the second longitudinal wave mode, L(0,2). These liquid-induced changes include a severe dispersion at periodic branching frequencies that result in a pulse-like characteristic in the extended received signal. A trailing portion of a received signal component associated with a geometric irregularity, is shown to comprise the branching frequency components. The trailing portion of the extended signal may therefore be removed in order to improve defect detection. The removal process comprises one of three alternative methods.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: October 2, 2001
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Keith A. Bartels
  • Patent number: 6294912
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of plate type structures such as walls, vessels, enclosures, and the like. The system includes magnetostrictive sensors specifically designed for application in conjunction with plate type structures or pipes that generate guided waves in the plates or pipes which travel threrethrough in a direction parallel to the surface of the plate or pipe. Similarly structured sensors are positioned to detect the guided waves (both incident and reflected) and generate signals representative of the characteristics of the guided waves detected that are reflected from anomalies in the structure such as corrosion pits and cracks. The sensor structure is longitudinal in nature and generates a guided wave having a wavefront parallel to the longitudinal axis of the sensor, and which propagates in a direction perpendicular to the longitudinal axis of the sensor.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: September 25, 2001
    Assignee: Southwest Research Institute
    Inventor: Hegeon Kwun
  • Publication number: 20010022514
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive short term inspection or long term monitoring of a structure. A plurality of magnetostrictive sensors are arranged in parallel on the structure and includes (a) a thin ferromagnetic strip that has residual magnetization, (b) that is coupled to the structure with a couplant, and (c) a coil located adjacent the thin ferromagnetic strip. By a transmitting coil, guided waves are generated in a transmitting strip and coupled to the structure and propagate along the length of the structure. For detection, the reflected guided waves in the structure are coupled to a receiving strip and are detected by a receiving magnetostrictive coil. Reflected guided waves may represent defects in the structure.
    Type: Application
    Filed: May 15, 2001
    Publication date: September 20, 2001
    Inventors: Glenn M. Light, Hegeon Kwun, Sang-Young Kim, Robert L. Spinks
  • Publication number: 20010019263
    Abstract: A method and apparatus is shown for implementing magnetostrictive sensor techniques for the nondestructive evaluation of railroad rails. The system includes magnetostrictive sensors specifically designed for application in conjunction with railroad rails and trains that generate guided waves in the railroad rails which travel therethrough in a direction parallel to the surface of the railroad rail. Similarly structured sensors are positioned to detect the guided waves (both incident and reflected) and generate signals representative of the characteristics of the guided waves detected that are reflected from anomalies in the structure such as transverse defects. The sensor structure is longitudinal in nature and generates a guided wave having a wavefront parallel to the longitudinal axis of the sensor, and which propagates in a direction perpendicular to the longitudinal axis of the sensor. The generated guided waves propagate in the rail within the path of the propagating wave.
    Type: Application
    Filed: December 12, 2000
    Publication date: September 6, 2001
    Inventors: Hegeon Kwun, Glenn M. Light
  • Publication number: 20010017541
    Abstract: A method and system for implementing magnetostrictive sensor techniques for the nondestructive evaluation of pipeline structures. The system consists of a magnetostrictive sensor instrument unit, a data storage unit, and a plurality of magnetostrictive sensor probes are positioned on an in-line inspection vehicle. The instrumentation unit includes electronics for transmitting excitation pulses to a transmitting magnetostrictive sensor probe as well as electronics for amplifying and conditioning the signals detected by a receiving magnetostrictive sensor probe. The magnetostrictive sensor probes include both plate magnetostrictive sensors and permanent magnets which provide a DC bias magnetic field necessary for magnetostrictive sensor operation. The transmitting and receiving probes are attached to the in-line inspection vehicle by way of mechanical arms on opposing sides of the vehicle.
    Type: Application
    Filed: December 18, 2000
    Publication date: August 30, 2001
    Inventors: Hegeon Kwun, Sang Young Kim
  • Patent number: 6212944
    Abstract: A method and apparatus is provided for the sensing, collection, and analysis of information on combustive and mechanical events occurring within an operating internal combustion engine through the measurement of mechanical stress waves present within the engine. The system includes a magnetostrictive sensor placed in mechanical compliance with the engine, preferably the engine block, which detects and translates stress waves into an electrical signal that is filtered and amplified for recording and/or for analysis. Information regarding the frequency, amplitude, and timing changes within the signal is utilized to characterize the ordinary operation of the engine and to identify anomalous events. The system includes a means for maintaining a signal record and comparing signal features with past records for a particular engine or with standard signal features associated generally with certain engine events.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 10, 2001
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Cecil M. Teller, Roy C. Meyer, Kendall R. Swenson
  • Patent number: 6205859
    Abstract: An improved method for defect detection with systems using magnetostrictive sensor techniques. The improved method involves exciting the magnetostrictive sensor transmitter by using a relatively broadband signal instead of a narrow band signal typically employed in existing procedures in order to avoid signal dispersion effects. The signal detected by the magnetostrictive sensor receiver is amplified with an equally broadband signal amplifier. The amplified signal is transformed using a time-frequency transformation technique such as a short-time Fourier transform. Finally, the signal characteristics associated with defects and anomalies of interest are distinguished from extraneous signal components associated with known wave propagation characteristics. The process of distinguishing defects is accomplished by identifying patterns in the transformed data that are specifically oriented with respect to the frequency axis for the plotted signal data.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: March 27, 2001
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Keith A. Bartels
  • Patent number: 6201391
    Abstract: A system and method for nondestructive testing of a workpiece having a metallic protective coating utilizing nonlinear harmonics techniques to determine degradation within the metallic protective coating. The invention use a time-varying magnetic field to sense magnetic properties of the protective coating. The odd-numbered harmonic frequencies are detected and their amplitudes are related to the magnetic condition of the material under test to determine coating degradation. When no harmonic signal caused by an induced magnetic field is detected, the coating is not degraded. When a harmonic signal is detected, the coating has degraded. Nonlinear harmonics techniques are used to determine the amount of coating degradation.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: March 13, 2001
    Assignee: Southwest Research Institute
    Inventors: Gary L. Burkhardt, Hegeon Kwun
  • Patent number: 6134947
    Abstract: A load sensor for measuring engine cylinder pressure and vehicle seat occupant weight in a nonintrusive manner that is easily adaptable to existing vehicle components and occupancy support structures. The sensor of the invention provides a toroidal-shaped ferromagnetic steel core that defines a hollow space within which an excitation coil and a detection coil are wound. For engine cylinder pressure sensing, this toroidal sensor is placed on a spark plug, much in the nature of a washer, and is clamped between the spark plug and the spark plug seat in the chamber. For seat occupant weight sensing, the sensor is placed under a seat leg around a fastening bolt, again much in the nature of a washer, and is clamped between the bolt and the floor of the vehicle. Changes in the load or force produced by the cylinder pressure or the occupant weight, alters the stress in the steel core of the sensor. These stress changes in turn induce changes in the magnetic properties of the steel core.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: October 24, 2000
    Assignee: Southwest Research Institute
    Inventor: Hegeon Kwun
  • Patent number: 6000288
    Abstract: The average wall thickness and the wall-thickness variation of a liquid-carrying pipe are determined. An elastic wave is generated and is measured after traveling a distance along the pipe. From the received wave, the average radius of the pipe, the average inside diameter of the pipe, and the inside diameter variation of the pipe are determined. From the average radius of the pipe and the average inside diameter of the pipe, the average wall thickness of the pipe is determined. From the variations in the average radius of the pipe and the inside diameter variation of the pipe, the wall-thickness variation of the pipe is determined. To determine the average inside diameter of the pipe, the invention relies upon the coupling between the elastic wave modes propagating in the wall of the pipe and the modes propagating in the liquid within the pipe.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: December 14, 1999
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Keith A. Bartels
  • Patent number: 5970434
    Abstract: A method for determining changes in the average wall thickness or the mean radius of a pipe or tube using ultrasonic and/or magnetostrictive wave probes by analyzing the dispersive behavior of waves traveling in the tube wall volume. The method examines certain wave propagation modes and identifies a cut-off frequency that is characteristic for a particular wall thickness or tube diameter. This method permits the rapid and accurate inspection of a length of pipe or tube from a single location on the inside diameter of the pipe and permits a comparison of data gathered with similar data for the structure in its original condition. Changes in the cut-off frequency, indirectly determined by the method of the present invention are inversely related to changes in the wall thickness and/or the mean radius for the cylindrical structure. In this manner the method of the present invention provides a mechanism for determining the remaining service life for such pipes and tubes.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: October 19, 1999
    Assignee: Southwest Research Institute
    Inventors: Joseph W. Brophy, Hegeon Kwun
  • Patent number: 5821430
    Abstract: An apparatus and method for the non-contact measurement of tensile loading (or tension) in ferromagnetic materials, particularly wire ropes, cables, and strands. The magnetostrictive effect is used to measure wave propagation properties within such materials to determine load forces imposed on the tested material based upon a signature obtained for like materials under like conditions. The apparatus and method contemplate an active measurement application, wherein a transmitting sensor generates an mechanical pulse within a material through the magnetostrictive effect, and a receiving sensor detects reflected mechanical waves within the material by the inverse magnetostrictive effect. Unlike other sensing methods, utilizing the magnetostrictive effect in this way has the advantage of generating and detecting mechanical waves in the tested material without direct physical or acoustical contact.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: October 13, 1998
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Keith Bartels, John J. Hanley
  • Patent number: 5767766
    Abstract: The present invention provides an apparatus and method for monitoring vehicular impacts using magnetostrictive sensors. The apparatus includes at least one and sometimes a plurality of magnetostrictive sensors positioned about a motor vehicle at locations appropriate for detecting and measuring stress waves in the structure of the vehicle caused by a vehicular collision or crash. Signals from the magnetostrictive sensors are collected and analyzed in a signal processing system that identifies a severe crash condition and commands a restraint trigger control system to activate one of a number of vehicle occupant restraint systems. The magnetostrictive sensors are structurally simple and mounted to integral elements of the vehicle by adhesive or mechanical attachment. Use of such magnetostrictive sensors in place of more conventional sensors (e.g. accelerometers) provides the opportunity to recognize and react to impact conditions within a significantly reduced time-frame.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: June 16, 1998
    Assignee: Southwest Research Institute
    Inventor: Hegeon Kwun